
Language-Driven Representation Learning for Robotics
Siddharth Karamcheti

Stanford University
skaramcheti@cs.stanford.edu

Suraj Nair
Stanford University

surajn@cs.stanford.edu

Annie Chen
Stanford University

asc8@cs.stanford.edu

Thomas Kollar Chelsea Finn Dorsa Sadigh Percy Liang
Toyota Research Institute Stanford University Stanford University Stanford University

Abstract
Recent work in visual representation learning for robotics demon-
strates the viability of learning from large video datasets of humans
performing everyday tasks. Leveraging methods such as masked au-
toencoding and contrastive learning, these representations exhibit
strong transfer to policy learning for visuomotor control. But, robot
learning encompasses a diverse set of problems beyond control
including grasp affordance prediction, language-conditioned imi-
tation learning, and intent scoring for human-robot collaboration,
amongst others. First, we demonstrate that existing representations
yield inconsistent results across these tasks: masked autoencoding
approaches pick up on low-level spatial features at the cost of high-
level semantics, while contrastive learning approaches capture the
opposite. We then introduceVoltron, a framework for language-
driven representation learning from human videos and associated
captions. Voltron trades off language-conditioned visual recon-
struction to learn low-level visual patterns, and visually-grounded
language generation to encode high-level semantics. We also con-
struct a new evaluation suite spanning five distinct robot learning
problems – a unified platform for holistically evaluating visual rep-
resentations for robotics. Through comprehensive, controlled ex-
periments across all five problems, we find thatVoltron’s language-
driven representations outperform the prior state-of-the-art, espe-
cially on targeted problems requiring higher-level features.1

1 Introduction
Good words are worth much, and cost little.

— George Herbert

Realizing a future of ubiquitous, broadly capable robots is predi-
cated on systems capable of generalizable perception and interac-
tion [Weiss et al. 1987; Chaumette andHutchinson 2006; Levine et al.
2016]. Towards this goal, recentwork in robotics present approaches
for learning visual representations to bootstrap learning for visuo-
motor control [Parisi et al. 2022; Nair et al. 2022; Radosavovic et al.
2022]. Critically, these approaches show that we can learn such
representations from real-world videos of human behavior – specifi-
cally, egocentric video datasets such as Something-Something-v2
and Ego4D [Goyal et al. 2017; Grauman et al. 2022] – instead of
solely relying on in-domain robotics data that is scarce and expen-
sive. While prior work has developed and evaluated representations
for visuomotor control, robot learning is an expansive discipline,
1Project Page: https://sites.google.com/view/voltron-robotics
Model Artifacts & Pretraining Code: https://github.com/siddk/voltron-robotics
Evaluation Suite: https://github.com/siddk/voltron-evaluation

spanning a diverse spectrum of problems: predicting grasp proposals
from visual input [Saxena et al. 2008; Mahler et al. 2017], language-
conditioned imitation learning [Tellex et al. 2011] and belief/intent
tracking for human-robot interaction [Hauser 2012; Javdani et al.
2018], amongst others. Broadening our focus to problems beyond
learning for control enables us to develop flexible, generalizable
representations that capture both low-level spatial reasoning and
high-level semantic understanding – a flexibility that is a key prereq-
uisite to realizing a foundation model for robotics [Bommasani et al.
2021]. Thus, we ask: how can we learn visual representations that
generalize across the diverse spectrum of problems in robot learning?

Recent approaches for learning visual representations for robot-
ics use pretraining objectives that reflect different inductive biases
for what the learned representations should capture. Masked Visual
Pretraining [MVP; Radosavovic et al. 2022] proposes using masked
autoencoding [He et al. 2022] to prioritize visual reconstruction
from heavily masked video frames, encoding representations that
facilitate per-pixel reconstruction. Separately, Reusable Represen-
tations for Robotic Manipulation [R3M; Nair et al. 2022] eschews
pixel reconstruction for two contrastive learning objectives: time
contrastive learning [Sermanet et al. 2018] and video-language
alignment. These approaches show strong performance on imita-
tion learning in simulated and real-world settings, with sizeable
improvements over strong alternatives such as ResNet or CLIP
features [He et al. 2016; Radford et al. 2021]; however, they have
not been evaluated beyond these settings. As a first contribution,
we evaluate these representations on problems beyond control and
identify inconsistent evaluation performance, with huge penalties
depending on the approach and specific application. MVP performs
well on problems such as grasp affordance prediction, but struggles
with higher-level problems such as language-conditioned imita-
tion. R3M instead excels at the higher-level problems, but degrades
completely on problems such as grasp affordance prediction.

Motivated by this, we presentVoltron, a framework for language-
driven visual representation learning for robotics that learns rep-
resentations that capture both low-level and high-level features,
empirically outperforming prior approaches over all applications.
Voltron models take videos and associated language captions as
input to a masked autoencoding pipeline, reconstructing one (or
more) frames from a masked context. The novelty of our frame-
work is in how we use language supervision. Depending on a tunable
probability 𝛼 , we either condition on (𝛼 = 0), or generate (𝛼 > 0)
the associated caption. Explicitly conditioning on words in differ-
ent contexts allows for low-level pattern recognition at the local,
spatial level, while generating language from our learned visual
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Figure 1: Voltron Evaluation Suite. We introduce a suite of evaluation problems spanning five applications within robotics, including
grasp affordance prediction, referring expression grounding, single-task visuomotor control (in simulation), language-conditioned imitation
learning (on a real robot), and intent scoring.

encoding allow us to infer higher-level features around affordances
and intents. Furthermore, guided by the hypothesis that language is
especially useful in describing change, we study dual-frame contexts
consisting of the initial and current observation in multi-timestep
tasks. Altogether, we examine three differentVoltron variants:V
– Cond (Language Conditioning: single frame, 𝛼 = 0), V – Dual
(Adding Context: dual-frame conditioning, 𝛼 = 0), and V – Gen
(Adding Language Generation: dual-frame, 𝛼 = 0.5 – we find that
𝛼 = 1 with no language-conditioning at all hurts performance).

To evaluate Voltron and other visual representation learning
approaches, we assemble a new evaluation suite (depicted in Fig-
ure 1) spanning five problem domains within robotics: 1) dense
segmentation for grasp affordance prediction [Zeng et al. 2017], 2)
object detection from referring expressions (e.g., “the blue coffee
mug to the left of the plate”) in cluttered scenes [Wang et al. 2021],
3) imitation learning for visuomotor control (in simulation) [Nair
et al. 2022], 4) learning multi-task language-conditioned policies
for real-world manipulation [Stepputtis et al. 2020] (on a real-world
Franka Emika fixed-arm manipulator), and 5) zero-shot intent scor-
ing [Javdani et al. 2018; Chen et al. 2021]. We choose these tasks for
their broad coverage; tasks such as grasp affordance prediction and
referring expression grounding require reasoning over low-level
spatial features, while language-conditioned imitation and intent
scoring require a deeper understanding of semantics.

Through experiments controlling for pretraining data and model
capacity, we show that the simplest Voltron representations (from
V – Cond) strictly outperform both MVP and R3M representa-
tions across all evaluation domains. Furthermore, by adapting our
models to learn from multiple frame contexts and that favor gen-
eration (e.g., withV – Dual andV – Gen), we show that we can
further boost performance on evaluations requiring higher-level
features such as with language-conditioned policy learning (on a
real robot) and intent scoring. Though language-conditioning offers
universal performance gains, there are tradeoffs between Voltron

models; adding language generation hurts performance on some
control tasks, even though its necessary for strong performance on
intent scoring. Furthermore, Voltron with single-frame language
conditioning performs well on non-episodic tasks (e.g., grasping),
but underperforms multi-frame models on control tasks. There is
not yet a silver bullet – a single representation strong on all tasks
– but the ability to balance tradeoffs between encoding low and
high-level features offers a net win over restrictions of past work.

Contributions. 1)WepresentVoltron, a framework for language-
driven visual representation learning. Through controlled experi-
ments and comprehensive ablations we demonstrate thatVoltron’s
representations strictly outperform the prior art across 2) a new
evaluation suite composed of five distinct problem domains within
robotics. Finally, 3) we analyze the tradeoffs between different
Voltron models that balance different types of feature learning,
outlining several directions for future work. We release all mod-
els, the evaluation suite, code (pretraining and adaptation), and
preprocessed data (https://sites.google.com/view/voltron-robotics).

Limitations. We do not have access to the compute resources
to train models of the same scale and data used in prior work
[Radosavovic et al. 2022; Nair et al. 2022]. Instead, we carefully
reproduce MVP and R3M – the current state-of-the-art approaches
– by pretraining on the Something-Something-v2 dataset [Goyal
et al. 2017], further controlling for batch ordering, model capacity,
and other sources of randomness (full details are in §4). However,
for full context we also include results from the official release
artifacts from both these works, as well as other methods such as
CLIP [Radford et al. 2021], though we note these results in gray or
with dashed lines as to indicate they are not directly comparable.

2 Related Work
Voltron is situated within a rich body of work in visual represen-
tation learning for robotics and multimodal pretraining.
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Figure 2: TheVoltron Framework. Central to our approach is language-driven learning on top of a masked autoencoding backbone. We
incorporate language in two ways, following §3.2: 1) as a conditioning variable fed to a multimodal encoder that also encodes one or more
video frames, or 2) as a generation target for the language generator [Left]. During downstream evaluation, we use the (frozen) outputs from
the encoder, adapting evaluation-specific “heads” on top [Right].

Visual Representation Learning for Robotics. An emerging
body of work in robot learning studies learning visual state rep-
resentations for control. A wealth of prior approaches learn rep-
resentations from in-domain data taken directly from the target
environment (and corresponding task); these techniques range from
using data augmentation [Laskin et al. 2020; Srinivas et al. 2020;
Kostrikov et al. 2021; Pari et al. 2022] to modeling forward dynam-
ics [Gelada et al. 2019; Hafner et al. 2020] to using task-specific
information [Jonschkowski and Brock 2015; Zhang et al. 2021]. Un-
like these approaches, we move beyond task-specific data, instead
leveraging large, accessible datasets such as videos of humans per-
forming everyday tasks. Work in this paradigm has exploded in
recent years. A number of approaches find that existing represen-
tations such as features from models trained on ImageNet [Deng
et al. 2009], or features from CLIP [Radford et al. 2021] enable
more efficient learning [Shah and Kumar 2021; Khandelwal et al.
2021]. More recently, multiple approaches have shown increased
dividends in applying such representations to visuomotor control,
for example by combining features at different layers of pretrained
ResNets [Parisi et al. 2022] or by pretraining such representations
on human videos, conjecturing that such data captures features
useful for robotic manipulation [Nair et al. 2022; Xiao et al. 2022;
Radosavovic et al. 2022; Ma et al. 2022]. However, missing from
these approaches is a notion of semantics; works such as MVP [Xiao
et al. 2022; Radosavovic et al. 2022] purely learn to perform masked
reconstruction from a single image, and even works that leverage
some temporal and linguistic signals do so in a limited way [Nair
et al. 2022; Ma et al. 2022]. Instead, our work is motivated by the
hypothesis that language understanding – both via conditioning

and generation – is an essential component of learning generaliz-
able visual representations. It is not enough that a representation
summarizes an observation; instead, for generalization to new con-
texts and behaviors, it must capture how observations (and changes
thereof) relate to higher-level semantic abstractions.

Voltron aims to do this with its language-driven representation
learning objective: by jointly modeling sequences of frames and
language, we enable a range of capabilities, from producing repre-
sentations of single images in isolation, to providing the capability
to generate language grounded in visual contexts. We demonstrate
the benefits of language-driven learning in our evaluation (see §5):
in head-to-head comparisons, Voltron models strictly outperform
prior approaches across all evaluation domains.

LearningMultimodal FoundationModels.Ourwork draws fur-
ther inspiration from a wave of progress in multimodal foundation
models such as CLIP, Multimodal Masked Autoencoders (M3AE),
Flamingo, CoCa, and Gato, amongst many others [Radford et al.
2021; Geng et al. 2022; Alayrac et al. 2022; Yu et al. 2022; Reed et al.
2022; Lu et al. 2023; Aghajanyan et al. 2022]. These approaches
highlight the myriad benefits of multimodal pretraining: language
supervision works to enrich visual representations (even in the
absence of language downstream), while visual supervision simi-
larly enriches language representations [Lu et al. 2019; Singh et al.
2022]. Of the many capabilities afforded by these models, many
have applications in embodied AI and robotics. CLIP representa-
tions have shown to be effective in applications to various robotics
tasks [Shridhar et al. 2021; Khandelwal et al. 2021; Cui et al. 2022],
while multimodal transformer models have proven effective ini-
tializations for training control policies [Reid et al. 2022; Liu et al.
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2022]. These approaches are similar toVoltron in their joint use of
visual and language inputs; whereVoltron differs, however, is in
our novel representation learning objective that balances language
conditioning and generation, enabling learning representations that
transfer to a wide range of applications within robotics.

3 Voltron – Language-Driven Learning
We assume access to a dataset of videos paired with natural lan-
guage annotations; in each video-language pair (𝑣, 𝑐), language
can take the form of a caption (e.g., “peels the carrot” in Figure 2),
narration, or even coarse textual label of a behavior. We assume
each video 𝑣 ∈ R𝑇×𝐻×𝑊 ×𝐶 consists of a sequence of frames 𝑣 =

[𝑜1, . . . , 𝑜𝑇 ], where each frame 𝑜𝑖 ∈ R𝐻×𝑊 ×𝐶 is RGB-encoded. We
tokenize and one-hot encode each utterance into a vocabulary 𝑉
of cardinality |𝑉 |, padding to a max length 𝐿 such that 𝑐 ∈ R𝐿×|𝑉 | .
We define a <NULL> token (separate from the <PAD> token) as a
placeholder for an empty language context. Furthermore, following
the MAE work, we define a visual masking function Mask(𝑣,𝛾) →
(𝑣visible ∈ R(1−𝛾 ) (𝑇×𝐻×𝑊 ×𝐶) , 𝑣masked ∈ R𝛾 (𝑇×𝐻×𝑊 ×𝐶) ) that parti-
tions the regions of a video into a set of visible and masked-out
regions subject to a fixed masking ratio 𝛾 . We sample a mask once,
and apply it uniformly across all frames in the video to prevent
leakage [Tong et al. 2022]; if the masks were sampled independently,
a masked region in one frame could be visible in another, allowing
the encoder to “cheat” by looking ahead.

3.1 Voltron – Core Components
AVoltron model comprises 1) a multimodal encoder that takes in a
visual context and (optional) language utterance producing a dense
representation, 2) a visual reconstructor that attempts to reconstruct
the masked-out visual context from the encoder’s representation
of what is visible, and 3) a language generator that predicts the
language annotation for the video given the encoded visual context.
The visual reconstructor and language generator crucially act to
shape the representations by first erasing portions of a (𝑣, 𝑐) pair,
then attempting to reconstruct the missing parts; we show in our
experiments (see §5) that this bottleneck helps focus on more low-
level features when we favor reconstruction over generation, and
more high-level, semantic features when we favor generation over
reconstruction. We step through each component below.

Multimodal Encoder: E𝜃 (𝑣,𝑢) → ℎ ∈ R𝑆×𝑑

The multimodal encoder (Figure 2; lower half in blue and orange)
is the core of a Voltron model. It takes as input (𝑣,𝑢) where
𝑣 ∈ {𝑣visible, 𝑣} denotes either the masked or unmasked (full) visual
context respectively, and 𝑢 represents a (possibly <NULL>) utter-
ance to condition on. As output, the encoder produces a dense
representation ℎ ∈ R𝑆×𝑑 where 𝑆 denotes the number of encoded
regions, and 𝑑 is a hyperparameter denoting the dimensionality of
the representation. Keeping with the original MAE work, we divide
each image 𝑜𝑖 ∈ R𝐻×𝑊 ×𝐶 into a set of non-overlapping regions
𝑅, where each region is a 𝑝 × 𝑝 patch; this results in |𝑅 | = 𝐻𝑊 /𝑝2
regions. Given a 𝑘-frame context, 𝑆 = (1 − 𝛾)𝑘 |𝑅 |.

Visual Reconstructor: R𝜃 (ℎ) → 𝑣masked ∈ R𝛾 (𝑘×𝐻×𝑊 ×𝐶)

The visual reconstructor (Figure 2; upper half in orange) takes
as input the encoded representation of the visible visual context

ℎ = E𝜃 (𝑣visible, 𝑐). It attempts to reconstruct the missing visual
regions 𝑣masked, conditioned on language context 𝑐 , producing a
prediction 𝑣masked. Following prior work, the elements of 𝑣masked
are the normalized pixel targets from the original image. We use
mean-squared error as the reconstruction loss Lreconstruct (𝜃 ).

Language Generator: G𝜃 (ℎ) → 𝑐 ∈ R𝐿×𝐶

The language generator (Figure 2; upper half in red) takes the
encoded representation of the visible context and the <NULL> lan-
guage token, ℎ = E𝜃 (𝑣visible, <NULL>). It generates the language
annotation, producing 𝑐 ∈ R𝐿×|𝑉 | , with each of the 𝐿 elements
corresponding to a probability distribution over the vocabulary. We
use the negative log-likelihood (cross-entropy) of the annotation 𝑐
under the generator as our loss Lgenerate.

The language generator crucially takes the <NULL> token as
input instead of the annotation 𝑐; inputting the same 𝑐 that the
generator is trying to output can lead to trivial collapse where the
encoder learns to memorize the tokens to aid the generator. As a
result, for each example during training we need to either condition
or generate language; this further motivates the parameter 𝛼 in
Figure 2 and in the training objective.

3.2 Balancing Reconstruction & Generation
The Voltron learning objective trades off language-conditioned
reconstruction and visually-grounded language generation to shape
the features captured by the encoder’s learned representation. The
reconstruction objective prioritizes low-level spatial information
conducive to filling in missing textures, colors, or edges; likewise,
the generation objective captures higher-level semantic informa-
tion, encouraging the encoder to encode features that are predictive
of the language caption. We make this tradeoff explicit by minimiz-
ing the following loss, characterized by the parameter 𝛼 ∈ [0, 1]:

L(𝜃 ) = Lreconstruct (𝜃 ) + Lgenerate (𝜃 )

=


MSE(𝑣masked, R𝜃 (E𝜃 (𝑣visible, 𝑐))) if 𝑧 = 0
MSE(𝑣masked, R𝜃 (E𝜃 (𝑣visible, <NULL>))) if 𝑧 = 1

+ NLL(𝑐,G𝜃 (E𝜃 (𝑣visible, <NULL>)))
and 𝑧 ∼ Bernoulli(𝛼)

For each example (𝑣, 𝑐) seen at training, we draw 𝑧 ∼ Bernoulli(𝛼):
with 𝑧 = 0 we condition on the original language utterance, while
with 𝑧 = 1, we generate the original language utterance, condition-
ing the encoder on the <NULL> token. We limit our exploration in
this work to at most two frame contexts 𝑘 = 2 due to computational
cost; even four frame contexts exceed the memory on the compute
available to us. In selecting the two frame contexts, we sample at
least five frames from each video clip in our dataset (with random
intervals between). We enforce a heuristic such that the first frame
in each dual-frame context comes from the first 20% of the clip,
with the other frame appearing in the remaining 80%.

Driven by the hypothesis that different values of 𝛼 and frame-
contexts 𝑘 shape the balance of low-level and high-level features
in our representations, we evaluate three different instantiations of
the Voltron framework (as mentioned in §1):
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• V – Cond: 𝛼 = 0, 𝑘 = 1 single-frame conditioning.
• V – Dual: 𝛼 = 0, 𝑘 = 2 dual-frame conditioning; a context-
aware model identical to V – Cond but trained on dual-
frame pairs (initial frame, random subsequent frame).

• V – Gen: 𝛼 = 0.5, 𝑘 = 2; condition and generate with equal
probability, trained on dual-frame contexts as above.

Note that we do not evaluate 𝛼 = 1; we find through preliminary
experiments that some language-conditioning is always helpful.

4 Implementation & Reproducibility
In addition to our framework, a core contribution of this work
is a comprehensive set of controlled experiments. To do this, we
reimplement both MVP and R3M using code released by the authors,
controlling for the pretraining data (at the level of the individual
frames seen per epoch) and model capacity.
Baselines – Preliminaries. Throughout this work, we have men-
tioned both MVP and R3M in terms of their tradeoffs; here, we
make their pretraining objectives explicit. Both prior approaches
use video datasets, but only learn single-frame encoders, choosing
to use the video structure in different ways (detailed below). Of the
two approaches, we note that only R3M uses language supervision.

MVP follows a masked autoencoding backbone, similar to that
depicted in Figure 2 (without language conditioning). MVP does not
offer any special consideration to the temporal structure of videos,
instead treating each frame in the dataset as as standalone input.
Given a single frame, MVP masks out regions subject to a fixed
mask ratio 𝛾 (same as in Voltron), encoding the visible context
with a Transformer encoder, then attempting to reconstruct the
missing context with a separate Transformer decoder – also using
mean-squared error for reconstruction.

R3M is different in that it does not contain a reconstruction
component, instead combining two contrastive objectives on top of a
single-frame visual encoder – time contrastive learning [Sermanet
et al. 2018] and image-language temporal alignment [Radford et al.
2021; Nair et al. 2021]. These objectives explicitly use the temporal
structure of videos. Given an encoding of a visual context, the time-
contrastive objective seeks to maximize the score of encodings
between frames close together in time (e.g., within a few frames of
each other), contrasted against frames from the same video that are
further away. R3M also uses language supervision. Given a separate
encoder that fuses a language caption with the encoding dual-
frames contexts (consisting of an initial and subsequent frame) the
image-language alignment objective attempts to assign scores that
capture “task progress:” the score of a subsequent frame occurring
later in a video subject to a language caption should be higher
than the score of a frame occurring earlier. The two key differences
between Voltron and R3M are 1) using visual reconstruction as
a dense objective vs. time contrastive learning, and 2) explicitly
conditioning on or generating language inVoltron vs. matching
visual and language embeddings as a contrastive objective.
Pretraining Dataset Construction. For all models in this work,
we use Something-Something-v2 [Sth-Sth; Goyal et al. 2017] as
our pretraining dataset, motivated by prior work [Shao et al. 2020;
Chen et al. 2021; Xiao et al. 2022]. All models see the exact same
image frames. We extract 5 frames per video, per training epoch
to ensure we are learning from multiple visual inputs of the same

context and to facilitate R3M’s time contrastive learning objective
[Sermanet et al. 2018]; we serialize the processed frames, and store
index files with the video/frame indices per epoch.
Data-Equivalent Reproductions. Though prior works release
trained model artifacts, they do not provide sufficient details for
reproduction, such as the exact frames sampled from videos, prepro-
cessing applied, or hardware/compute used. We thus reimplement
MVP and R3M in a controlled setting on Sth-Sth using the released
code from the original papers where possible and clarifying addi-
tional details with the authors directly as needed. We implement all
models with a Vision Transformer (ViT) backbone and additionally
implement R3M with a ResNet-50 backbone based on discussions
with the authors of the original work. They suggested that there
may be slight differences in the inductive bias of ResNets vs. Vision
Transformers [Raghu et al. 2021] that would be worth investigating.
We use the ViT-Small/16 variant, with patch size 𝑝 × 𝑝 = 16 × 16
and a Transformer with 12 blocks, 6 attention heads per block,
and hidden dimension 𝑑 = 384 [Wightman 2019]. We refer to our
reproductions as “R-MVP,” “R-R3M (ViT-S),” and “R-R3M (RN-50).”

We pretrain all models in this work on TPU v3-8 compute, gener-
ously granted to us by the TPU Research Cloud program (TRC). We
run 400 epochs of training for all models with a batch size of 1024,
each epoch comprised of a pass through 844K frames (168K clips in
Sth-Sth, 5 frames per clip). We do not use dropout or data augmen-
tation. All code and reproducibility details are in our open-source
code repositories, linked from our project page.
Additional Comparisons. Thoughwe lack the compute resources
to train on models on the same scale data, we further contextualize
our results by evaluating the official R3M and MVP models released
in the original works. We note that the released R3M model uses
the entirety of the Ego4D dataset [Grauman et al. 2022], comprised
of over 3000 hours of videos, spanning 3.6M individual clips (com-
prisingmore than 20x the data we use in this work). The released
MVP also uses Ego4D, but add Sth-Sth, Epic-Kitchens, and more
[Damen et al. 2018; Shan et al. 2020], while also scaling models up
to 86M and 307M parameters, (4-10x the size of ViT-Small). We also
evaluate OpenAI’s CLIP model (ViT-Base) as a strong baseline that
leverages language supervision. We refer to these models as “R3M
(Ego4D),” “MVP (EgoSoup),” and “CLIP (ViT-B),” following naming
conventions from the original work and denote them with gray text
and dashed lines in plots.
Voltron Architecture Details.Voltron follows the masked au-
toencoding pipeline detailed above, with simple extensions for
incorporating language. We implement the Voltron encoder E𝜃 by
jointly embedding the language 𝑢 and visual inputs 𝑣visible with a
Transformer [Vaswani et al. 2017]. We initialize language embed-
dings from DistilBERT [Sanh et al. 2019], learning a separate linear
projection into the encoder’s embedding space, similar to R3M. For
the visual reconstructor R𝜃 and language generator G𝜃 , we use
a separate Transformer with a small addition to enable language
generation. In a standard MAE decoder, patches are generated inde-
pendently, attending to all patch embeddings from the encoder. To
enable generation, we append a causal (lower triangular) attention
mask for preventing our language decoder from “peeking” at the
future inputs to generate (visualized by the red triangle in Figure 2).
This is akin to prefix language modeling [Raffel et al. 2019]; all
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Table 1: Summary of Evaluation Suite & Results.While some of our evaluation domains use language input, grasp affordance prediction
and single-task visuomotor control do not.Voltron models obtain strong performance over all applications, whereas R-R3M and R-MVP
exhibit variable performance depending on the application subset.

Input Format Train Dataset Size Best Model Best Baseline

Grasp §5.1 Single Frame 1470 V – Cond R-MVP
Referring Expressions §5.2 Single Frame, Language Expression 259,839 V – Cond R-R3M (ViT)
Single-Task Control §5.3 Frame History 𝑛 ∈ [5, 10, 25] Demos V – Dual R-R3M (RN-50)
Language-Conditioned Imitation §5.4 Frame History, Language Instruction 100 = 5 x 20 Demos V – Dual / V – Gen R-R3M (ViT)
Intent Scoring §5.5 Frame History, Language Intent N/A (Zero-Shot) V – Gen N/A

embeddings can attend to the visual inputs (as in a traditional MAE
decoder), but language embeddings can only attend to the preceding
language input.

Voltron uses a combination of different language objectives on
top of the standardMAE pipeline, adding complexity. To help ensure
stable and reliable training, we follow best practices from the NLP
community and make a series of small changes to the Transformer
architecture including: 1) switching the default LayerNorm to root-
mean square normalization [Zhang and Sennrich 2019; Narang et al.
2021] (stability, no learned parameters), 2) switching from the de-
fault GELU to the more performant SwishGLU activation [Shazeer
2020; Chowdhery et al. 2022] (performance), and 3) adopting Layer-
Scale for scaling down the magnitude of each residual connection
[Touvron et al. 2021; Karamcheti et al. 2021a] (prevents overflow).
To ensure that any gains in evaluation performance stem from our
insights around language-driven learning rather than this modified
architecture, we run an ablation experiment in §6. We find that
these changes do not change downstream evaluation results, but
significantly improve training stability. We present further details,
including a sketch of the implementation differences in §B.1.
Adapting Representations. Unfortunately, there is not yet a stan-
dard for extracting representations from learned Vision Trans-
former encoders, especially for those trained via masked autoencod-
ing. However, Zhai et al. [2022] suggest that multiheaded attention
pooling [MAP; Lee et al. 2018] is a strong and versatile approach.
We choose to use MAP as the sole feature extraction approach in all
our ViT experiments, finding it to universally improve performance
for all ViT models, relative to the “default” extraction approaches
suggested in prior work. Notably, we find that just switching to
MAP-based extraction over the procedure used in the original MVP
work almost doubles success rate on visuomotor control tasks; we
provide results from this analysis in §D.2. We note that we use
MAP when evaluating CLIP (ViT-Base/16) and MVP (EgoSoup) for
the fairest and strongest possible comparison.

5 Evaluation Suite: Construction & Results
We outline our evaluation suite (Table 1) comprised of five problem
domains within robotics. Each evaluation consists of adaptation
data and evaluation metrics. The adaptation data consists of vi-
sual input(s) (as RGB frames) and in some cases, language (e.g.,
an instruction for language-conditioned imitation). We evaluate
representations fromVoltron and various baseline models by freez-
ing the pretrained vision and language encoders, instead adapting
evaluation-specific “heads”(lightweight networks) on top of the
extracted representations. We choose evaluations that represent

Figure 3: Grasp Affordance Prediction [ARC Grasping; Zeng
et al. 2017]. Given objects in cluttered bins, segment the image cor-
responding to “graspable” (green), vs. “non-graspable” (red) regions;
note that these regions are labeled for use with suction grippers.

domains that capture different types of understanding; in the follow-
ing sections, we motivate the role of each application and provide
experimental results.

5.1 Grasp Affordance Prediction
We consider the problem of grasp affordance prediction: given an
image of a set of objects (e.g., on a cluttered workspace), predict a
dense segmentation mask corresponding to “graspable” and “non-
graspable” locations for a suction-based gripper.

Motivation. Grasp affordance prediction from visual input is a
foundational task in robot learning, and is often a key component
of many modular systems [Bohg et al. 2013; Correll et al. 2016].
Including this evaluation allows us to probe the low-level spatial
features retained by various representations.

Table 2: Results on Grasp Affordance Prediction. We report
average precision at various confidence intervals following the
original procedure described in Zeng et al. [2017].

Architecture Top-1 Top 1% Top 5%

R-R3M ViT-S 40.38 40.55 28.66
R-MVP ViT-S 72.94 61.47 39.77
V – Cond [Ours] ViT-S 85.15 80.71 47.45

V – Cond [Ours] ViT-B 90.00 82.44 62.33

CLIP ViT-B 43.20 44.11 29.66
MVP (EgoSoup) ViT-B 77.49 72.87 51.28

6



Voltron: Language-Driven Representations for Robotics

Figure 4: Referring Expression Grounding (Object Detection) from the OCID-Ref Dataset [Wang et al. 2021]. Given a referring
expression in natural language, the goal is to predict the bounding box coordinates around the respective object. An important feature of
OCID-Ref are the various dataset splits, corresponding to three increasing amounts of clutter, depicted left-to-right.

Evaluation Details.We specifically consider the problem as for-
mulated in the Amazon Robotics Challenge Grasping Dataset (ARC-
Grasping) introduced by Zeng et al. [2017]. We choose this dataset
over alternatives as it is readily available and consists of 1800+ im-
ages of multiple real-world objects in cluttered bins (Figure 3; left).
We focus on the RGB-only, suction-grasping split of the dataset. We
implement models for grasp affordance prediction following recent
work on semantic segmentation with Transformers [Zheng et al.
2021; Strudel et al. 2021; Bao et al. 2022], specifically by introducing
a Progressive Upsampling (SETR-PUP) head on top of our frozen
visual features. We omit results from all ResNet models – R-R3M
(RN-50) and R3M (Ego4D); unfortunately, training with simple PUP-
style on the final ResNet-50 7 × 7 spatial grid did not converge,
possibly indicating a need for more complex architectures with
significant added parameters (beyond the scope of this work). As
this task only takes a single frame as input, we do not evaluateV –
Dual andV – Gen. Following the original work, we report average
precision at various confidences: Top-1 precision, Top-1% precision,
and Top-5% precision. We select models via 5-fold cross validation.
This task does not have a language component. We provide addi-
tional details around the adaptation procedure in Appendix E and
the open-source code repositories.

Experimental Results. Looking at Table 2, representations from
MVP and Voltron models perform well across the board, while
contrastive representations (e.g., from CLIP and R-R3M) perform
quite poorly. Interestingly, V – Cond outperforms R-MVP and
MVP (EgoSoup) on this task, despite the absence of language input,
demonstrating that language supervision during pretraining can
improve low-level feature learning, even relative to larger-scale
models trained on much more data.

5.2 Referring Expression Grounding
Given a cluttered scene and language expression, the goal is to
predict a bounding box around an object (e.g., “the blue black pen
on the front left of the orange can” in Figure 4; middle).
Motivation. Capturing object-centric priors and high-level seman-
tics around properties such as color and spatial relationships is
crucial across the entire robotics stack. More importantly, this is
a language-conditioned task, allowing us to evaluate the impact of
pretraining with language supervision.
Evaluation Details. We use the OCID-Ref Dataset [Wang et al.
2021] grounded in scenes that are representative of robotics set-
tings; other datasets such as RefCoCo [Yu et al. 2016] are grounded
in more global scenes (e.g., multiple humans playing frisbee on a
field) that are less informative for robot learning. OCID-Ref also

Table 3: Results on Referring Expression Grounding.We report average precision @ 0.25 IoU following Wang et al. [2021] (OCID-Ref).
This is a language-conditioned task; across various clutter levels, Voltron models are substantially more performant than baselines, as well
as models trained on more data and with alternative language supervision (e.g., CLIP).

Architecture Total Minimum Clutter Medium Clutter Maximum Clutter

R-R3M ViT-S 63.30 63.87 68.34 55.33
R-MVP + DistilBERT ViT-S 49.58 50.98 53.83 41.94
V – Cond [Ours] ViT-S 89.38 85.88 95.39 89.12

V – Cond [Ours] ViT-B 90.77 87.56 96.58 90.17

CLIP ViT-B 68.35 67.01 76.61 60.33
MVP (EgoSoup) + DistilBERT ViT-B 49.25 51.46 52.15 40.50
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Figure 5: Franka Kitchen – Single-Task Visuomotor Control Results. Visualization of the Franka Kitchen evaluation environments,
comprised of five unique tasks, with two camera viewpoints [Left]. Results (success rate for each of 𝑛 demonstrations) forVoltron and
baselines, showing the benefit of language-driven learning (over 3 seeds) [Right]. In dashed lines (not directly comparable), we plot CLIP
(ViT-B), MVP (EgoSoup), and R3M (Ego4D) trained with 𝑛 = 25 demonstrations.

provides splits based on the clutter level of the underlying scene,
letting us further evaluate robustness. We regress bounding box
coordinates directly from our frozen features using a shallow MLP.
All approaches condition on language (see expressions in Figure 4),
using the given language encoder where possible. This means using
the multimodal encoder forV – Cond and the default learned text
encoder for CLIP or R3M. However, for approaches that only learn
visual representations (e.g., MVP), we append pretrained language
features from DistilBERT – the same language model used to initial-
izeVoltron. We note again that we omit ResNet results; though this
task did not require upsampling, we find trained models obtained
no better than random performance, again indicating a need for a
more sophisticated adaptation architecture (beyond the scope of
this work). We report average precision at 0.25 IoU for each split
following the evaluation procedure outlined in Wang et al. [2021].
We provide additional details around the adaptation procedure in
Appendix E and the open-source code repositories.

Experimental Results. Results for each model across the various
clutter splits are in Table 3. Voltron models are especially strong,
vastly outperforming R-MVP by 40% and R-R3M by over 25% on
all splits, showing that multimodal pretraining – even just condi-
tioning on language when optimizing for masked reconstruction –
can lead to substantial gains on downstream multimodal tasks. We
isolate the massive performance gains ofVoltron models over prior
work due to the multimodal encoder that learns fused embeddings
of vision and language, allowing language to shape the visual rep-
resentations during pretraining. In contrast, R3M, and CLIP models
learn independent text encodings that are only fused post-hoc, dur-
ing adaptation. This is even worse for MVP: these models need
to learn to fuse their strong visual embeddings with the language
embeddings from a completely different model (DistilBERT).

5.3 Single-Task Visuomotor Control
Motivation. Imitation learning for visuomotor control has been
the de-facto evaluation for prior work [Parisi et al. 2022; Nair et al.

2022; Radosavovic et al. 2022], giving us the closest comparison to
the evaluations used in MVP and R3M. This evaluation focuses on
sample-efficient generalization, measuring how well visual repre-
sentations help in learning policies from limited demonstrations
𝑛 ∈ {5, 10, 25}. This evaluation takes place in simulation.
Evaluation Details. We look at policy learning in the Franka
Kitchen simulation environments as defined by Nair et al. [2022].
This domain consists of 5 tasks, with 2 distinct camera viewpoints
(Figure 5). We learn shallow MLP policy heads via behavioral
cloning that predict 9-DoF joint velocities (7 joints, 2 gripper) from
our (frozen) visual features and proprioceptive state. We follow the
R3M evaluation, reporting average success rates for each setting
with 𝑛 demonstrations across the 5 tasks, 2 viewpoints, and 3 ran-
dom seeds. We train separate policies per task, with no language
conditioning – using the exact code provided by Nair et al. [2022].
Additional details are in Appendix E and the open-source code.
Experimental Results.Most approaches perform similarly across
the various number of training demonstrations (Figure 5; right).
However, we see some promising trends; Voltron models perform
better than both baselines, with approaches that learn from mul-
tiple frame contextsV – Dual andV – Gen showing significant
improvements over single-frame approaches. Yet, the absolute suc-
cess rates are low; learning for control is difficult, and while good
visual representations can help, learning closed-loop policies from
limited data remains an open challenge.

5.4 Language-Conditioned Imitation (Real)
Given a dataset of language instructions (e.g. “throw the bag of
chips away”) paired with demonstrations (on a real robot in a real-
world tabletop setting), learn an instruction following policy via
behavioral cloning. Figure 6 depicts the real-world environment.
Motivation. A large body of work looks at learning language-
conditioned policies for human-robot collaborative settings [Aru-
mugam et al. 2017; Stepputtis et al. 2020; Lynch and Sermanet 2020;
Karamcheti et al. 2021b; Ahn et al. 2022]. This evaluation gets at

8



Voltron: Language-Driven Representations for Robotics

Figure 6: Real-World Language-Conditioned Imitation Learning Results. The real-world “Study Desk” environment, with sample
language instructions corresponding to the five behaviors we evaluate. [Top] The challenging visual distractor split for evaluating robustness
to novel distractors, ranging from simple color swapping of background objects (e.g., purple to green textbook), to more drastic changes such
as playing a clip from “Voltron – the Animated Series” in the background [Bottom].

the robustness and reliability of learned representations, with the
goal of validating different approaches in real-robot settings.

Evaluation Details. We construct a “study desk” environment
(Figure 6) with five prototypical “tasks”: 1) closing the drawer, 2)
throwing the green bag of chips in the trash can, 3) discarding the
used coffee pods, 4) moving the cyan coffee mug to the purple plate,
and 5) moving the same mug to the yellow plate. For each task, we
collect 20 teleoperated demonstrations at 10 Hz, randomly resetting
the scene between episodes. We adopt the keyframe-based action
space proposed in James and Davison [2022] for learning. This
approach heuristically breaks a demonstration into 4-5 “waypoints”
(end-effector poses) that are used as action targets during behav-
ior cloning; during policy execution, we plan min-jerk trajectories
from the current position to the predicted waypoint, feeding the
subsequent state and visual observation back to our policy [James
et al. 2022; Shridhar et al. 2022]. To collect diverse instructions, we
prompt ChatGPT [version dated Jan 9th, 2023; OpenAI 2022] with
simple task descriptions, asking it to generate diverse language
instructions, collecting 25 utterances total (20 train, 5 held-out)
per task.2 We parameterize our policy similarly to §5.3, adding a
shallow MLP on top of the extracted (frozen) visual representations
[Misra et al. 2017]. This task is language-conditioned; as in OCID-
Ref, we use the given language encoders for each approach where
possible, appending DistilBERT features to pure visual representa-
tions otherwise. We report success rates with partial credit – 0.25
points for achieving each of the following “milestones”: reaching an
object, interacting with it, transporting it, and completing the task.
We provide additional details in Appendix E, and include videos of
policy rollouts on the project page.

2ChatGPT Prompt (additional details and generated instructions on project page): I’m
trying to train a robot assistant that can follow diverse language instructions. One task
requires moving an empty chip bag (a green bag of those jalapeno chips) to the garbage.
Can you generate 25 natural-sounding instructions (e.g., “throw away the chips”)?

Experimental Results. Looking at success rates of the various
representations (Figure 6; top right) we see an exaggerated version
of the trends exhibited in the single-task control setting; Voltron
models obtain an extra boost in performance across the board given
that this task is language-conditioned, highlighting the strength of
its fused representations. Similarly, R-R3M models exhibit the next
best performance. Due to time and shared resource constraints, we
do not run out MVP (EgoSoup), R3M (Ego4D), or CLIP (ViT-B/16),
though we expect similar trends as in the last evaluation.

5.5 Qualitative: Zero-Shot Intent Scoring
We perform a qualitative evaluation for the problem of language-
based intent scoring; given a language expression describing an
intent or behavior (e.g., “opening the faucet”) and a corresponding
video (that may or may not show the described behavior), predict
an “alignment score” for each frame of a video. This alignment
score should capture how well the current visual context matches
the described behavior – ideally reflecting calibrated confidence
over time (an example language/video is shown in Figure 7; left).

Motivation. This evaluation is motivated by two active areas of re-
search: reward learning from language and demonstrations [Smith
et al. 2020; Shao et al. 2020; Chen et al. 2021; Bahl et al. 2022], and be-
lief modeling for human-robot collaboration [Hoffman and Breazeal
2007; Hauser 2012; Bandyopadhyay et al. 2013]. This evaluation
probes for the ability to reason over intents and visual behaviors
jointly, without the need for additional data.

Evaluation Details. This is a qualitative evaluation that focuses
on measuring how well existing approaches “track” progress condi-
tioned on a language intent over time. Doing this zero-shot means
that we can only evaluate models that can produce alignment scores
given language and visual context: 1) CLIP (ViT-B/16) through co-
sine similarity of learned vision and text representations, 2) R3M
(Ego4D) through the “video-language alignment” head, and 3) our
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Figure 7: Qualitative Zero-Shot Intent Scoring Results. Given a pair of videos from the WHiRL dataset [Bahl et al. 2022] of a human
and robot performing a task, we evaluate the ability of V – Gen, R3M (from Nair et al. [2022]) and CLIP in scoring various frames subject
to the utterance “opening the faucet.” While CLIP and R3M produce extremely noisy scores,V – Gen is calibrated, successfully tracking
progress over time – both for the human user, as well as for the robot.

V – Gen model (by measuring the likelihood of a given language
utterance conditioned on visual context under the language genera-
tor). Given a video of an agent performing some behavior described
in language (e.g., “opening the faucet”), we estimate and plot scores
under each model across a sequence of video frames. We use videos
from WHiRL [Bahl et al. 2022] of humans and robots performing
the same tasks from different views; we choose to evaluate intent
scoring for both agents to better capture the robustness and transfer
potential for these approaches in similar real-world settings.

Experimental Results. The two curves in Figure 7 show the pre-
dicted scores over time for the language intent “opening the faucet.”
Even though it has never been trained for this task, we find that
V – Gen is able to coherently predict not only the exact frames
corresponding to “keypoints” in each video (e.g., touching the han-
dle, observing when the water starts running), but is also capable
of measuring partial progress – akin to a shaped, dense reward;
however, both R3M (Ego4D) and CLIP (ViT-B/16) fail at this task,
predicting random scores with high variance across sequential time
steps. Note that the intent scores are not perfect; after turning the
faucet on for the human video, predicted scores remain high, while
for the robot, the scores taper off. It is not clear why this happens,
but given a small amount of adaptation data, one could ensure
consistent behavior. We provide more examples from WHiRL in
§C.5, and additional evaluation details in Appendix E.

6 Ablations, Extensions, & Further Analysis
The comparative results across the various evaluation problem
domains paintVoltron’s language-driven representations in a fa-
vorable light relative to MVP and R3M baselines. Yet, there remain
key questions that we address in this section: is language super-
vision actually driving these results? Why generative language
modeling over masked language modeling? WillVoltron scale?

Ablation: The Impact of Language Supervision. The second
row of Table 4 shows a subset of evaluation results across three dif-
ferent problem domains when training a “no-language” variant of

theV – Cond architecture – this variant is in essence an alternate
version of a masked autoencoder that uses the small architecture
modifications we added for training stability in §4. As such, it also
serves as an architecture ablation when compared to the R-MVP
results, enabling us to isolate the impact of the small stability modi-
fications described in §4. Indeed, the results confirm our hypotheses:
first, removing language results in a definitive drop in performance
across all evaluation applications. Second, the respective results
for each evaluation application are on par with the corresponding
results for the R-MVP model, demonstrating that the performance
ofVoltron models does not stem from the architecture. We delve
further into this ablation in §C.1.
Ablation: Generative vs. Masked Language Modeling. Look-
ing at theVoltron objective, a natural question to ask is why we
chose language generation over masked language modeling. Further-
more, recent and concurrent work propose learning multimodal
masked autoencoders (M3AE) both within and outside of robot-
ics [Geng et al. 2022; Liu et al. 2022], showing promising results
in learning visual representations for image classification tasks,
amongst others. To assess the differences, we choose to reproduce
the M3AE model in a manner similar to our reproduction of MVP
and R3M; we keep the same Something-Something-v2 pretraining
data, adopting the exact procedure described in Geng et al. [2022],
then evaluating the resulting representations on the same subset of
evaluation domains as in the prior ablation (third row of Table 4).
Surprisingly, we see drastic drops in performance across the board.
Looking at the pretraining curves, we identify a possible reason for
this failure: in optimizing M3AE on Sth-Sth, we see the language
modeling loss go to zero almost immediately, leading to overfit-
ting. A possible explanation is that the masked language modeling
conditioned on visual contexts in datasets annotated with short,
predictable narrations leads to degenerate representations, while
generative language modeling is not susceptible to the same types
of collapse; looking at ways to mitigate this seems like a promising
direction for future work. Explicit details around pretraining and
evaluating R-M3AE, with an in-depth discussion are in §C.2.
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Table 4: Ablation Experiments. We select a subset of evalua-
tions from §5 – grasp affordance prediction, referring expression
grounding, and single-task visuomotor control.

Grasp Refer Imitate
PR @ Top-1% Total Accuracy (n = 25)

V + Lang [Ours] 80.71 89.38 38.2 ± 5.09

No-Language ↓ 65.83 53.44 33.1 ± 4.79
R-M3AE ↓↓ 52.79 51.61 24.0 ± 4.21

Extension: Scaling Up. Prior approaches have shown gains in
scaling model capacity; here, we present preliminary evidence that
Voltron models behave similarly. For each evaluation in §5, we
evaluate a ViT-Base variant of V – Cond (86M parameters vs.
the 22M in the ViT-Small). We see universal improvement: Top-
5% precision for grasping (Table 2; middle row) increases by 15%,
expression grounding accuracy improves (Table 3; middle row), as
does performance on control.
Extension:Robustness toReal-WorldDistractors. Factors such
as lighting conditions, time of day, and accidental environment per-
turbations (e.g., a colleague knocking over the camera) can have a
profound impact on performance of robotic systems, especially if
learned representations are not robust. We run a limited “robust-
ness” evaluation after training language-conditioned policies from
the demonstrations described in §5.4. Success rates before and after
introducing visual distractors for two of the “meta-tasks” are in Fig-
ure 6 (bottom right).3 We find thatVoltron and R-MVP models are
robust to even the most extreme distractors – seemingly a benefit
of per-patch masking coupled with MAP-based extraction.

7 Discussion & Conclusion
We propose Voltron, a framework for language-driven representa-
tion learning that balances conditioning and generation to shape the
balance of low and high-level features captured. We introduce an
evaluation suite spanning five diverse problems within robotics for
holistically evaluating visual representations. Through controlled
experiments and ablations, we validate the strengths of our repre-
sentations; across all evaluation tasks,Voltron models that balance
language conditioning and generation strictly outperform prior
approaches such as R3M and MVP, and in many cases show perfor-
mance competitive with or exceeding that of approaches that use
orders of magnitude more data or more expressive models.

Yet, while language is a pivotal source of supervision, there are
still key questions to answer. Why is language-based pretraining
helpful on tasks that have nothing to do with language? Why not
try to learn one model that can encode both low-level and high-level
features, without tradeoffs? While there is not a silver bullet yet
we hope that future work takes a deep, grounded look at these
questions, identifying what existing representations capture – and
more importantly, what they miss. Our hope is thatVoltron serves
as a starting point; a flexible, unified framework for future improve-
ments in visual representation learning for robotics.
3We try five distractors spanning simple changes such as swapping the purple textbook
in the background for a green one, to more extreme distractors such as playing a clip
from “Voltron, the Animated Series” on a tablet in the middle of the workspace. Videos
are on the project page.
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Voltron: Language-Driven Representations for Robotics

Overview

In the appendices below, we provide additional details around the implementation, pretraining, and adaptation procedures described in the
main text, in addition to delving deeper into various discussions. Finally, we add additional results and visualizations that further complement
the findings from the main text.

We provide open-source code for loading and using pretraining models, hosted links for our preprocessing splits (including the actual batches
seen during training), and a separate, standalone open-source code repository for our evaluation suite. Our hope is that the evaluation suite
especially is general and easy to use for downstream work on evaluating learned representations. The full manifest of resources are as
follows:

• Project Page (videos & additional links): https://sites.google.com/view/voltron-robotics
• Open-Source Modeling Repository (pretraining code for all approaches, loading models): https://github.com/siddk/voltron-robotics
• Open-Source Evaluation Suite (general API for evaluating on different problem domains): https://github.com/siddk/voltron-evaluation

All model and automated evaluation code is in PyTorch; however, the evaluation code can be easily overridden to suit your needs.

An overview of each appendix can be found below. We further indicate which parts of the appendices are best viewed here in the text or on
the project page; for videos and visualizations, we highly recommend navigating to the latter.

Appendix A – Motivating Questions

We index a list of “motivating” questions that may arise from reading the main text and that we expand on further here (e.g.,
“why only evaluate frozen representations”). Our answers here are direct, and in many cases link to actual experiments further
on in the appendices.

Appendix B – Voltron Implementation

We provide code and other implementation details around the modifications to the Transformer architecture described in the
Implementation and Reproducibility Section (see §4) of the main text, along with additional details around the released models
and data artifacts from this work. The section is structured as follows:

§B.1 –Voltron Transformer Implementation

Side-by-side comparisons of theVoltron and “standard” Vision Transformer blocks.

§B.2 – Jointly Processing Vision & Language

Additional details around encoding multimodal inputs (e.g., position encoding, modality tokens, etc.).

§B.3 – Pretraining Curves

Voltron pretraining loss curves (reconstruction error, language modeling error) over training; useful for characterizing
the behavior of downstream models (and the trade-offs between the losses).

§B.4 – Index of Released Artifacts

We release pretrained Voltron models – V – Cond, V – Dual, V – Gen – in addition to intermediate checkpoints to
facilitate future work. We also release the largerV – Cond model (ViT-Base).

Appendix C – Additional Results & Visualization

We report additional results and visualizations from experiments mentioned in the main text, as well as other experiments that
further support our conclusions.

§C.1 – Analysis: Impact of Language-Conditioning on Reconstruction Loss

We revisit the language vs. no-language ablation from the main text, looking at pretraining curves to help explain why
language is so helpful as a supervision signal. We find that language-conditioning significantly lowers reconstruction
loss, allowing models to pick up on more low-level features.

§C.2 – Analysis: Generative vs. Masked Language Modeling

We look further at the masked language modeling ablation from the main text, via the reproduction of Multimodal
Masked Autoencoders [M3AE; Geng et al. 2022]. We find in the pretraining curves high evidence of overfitting with
masked models early in training, impacting the learned representations.
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§C.3 – Results: Adroit Visuomotor Control

We present results on the Adroit Visumotor Control environments from Nair et al. [2022], finding that while language
is again superior, higher-level features perform better. This is preliminary evidence that even for individual evaluation
domains (e.g., single-task visuomotor control), there is no silver bullet; different types of representations perform
differently.

§C.4 – Qualitative: Real-Robot Language-Conditioned Policy Rollouts

Visualizations of real-world policy rollouts from the various representation learning approaches.

§C.5 – Qualitative: Additional Intent Scoring Visualizations

Additional intent scoring visualizations using videos from the WHiRL dataset [Bahl et al. 2022].

Appendix D – Data-Equivalent Reproductions & Reproducibility

We add additional discussion around the reproductions of MVP and R3M on the Something-Something-v2 dataset:
§D.1 – Additional Preprocessing Discussion

Additional discussion of how we preprocess Something-Something-v2 [Sth-Sth; Goyal et al. 2017] for pretraining, with
a comparison of how prior work such as MVP source and process pretraining data.

§D.2 – Multiheaded Attention Pooling – Feature Extraction

Detailed explanation of the Multiheaded Attention Pooling [MAP; Lee et al. 2018] feature extraction strategy, with
analysis and results comparing to alternative methods.

Appendix E – Adapting Representations for Evaluation

We provide further descriptions of the adaptation pipeline for each of the five evaluation domains.
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A Motivating Questions

Q1. From the results, some Voltron models outperform larger models such as MVP-Base trained on significantly more data, even on tasks that do
not necessarily need language information. How do you make sense of this?

We find that in many of our evaluation domains, especially domains with episodic tasks such as single-task and language-conditioned
imitation learning, it is important to discern differences across frames in the same overall visual context, or otherwise pay attention to small
visual distinctions. Looking at the original MVP work [Radosavovic et al. 2022], we see that the original pretraining datasets are compiled by
sampling frames from various video datasets once, in a single-step procedure, at low sampling rates. For many datasets (such as Sth-Sth and
Ego4D), this means only seeing 1-2 frames per video clip in total during training.

In contrast, when we sample data from Sth-Sth, we ensure to sample at least 5 frames per clip, per epoch; while the aggregate amount of
diverse contexts is much lower than in the original MVP work, seeing multiple frames per context seems to significantly help learning, and
not just forVoltron models! On the tasks whereVoltron models outperform MVP (EgoSoup) (with a larger ViT-Base encoder), we also see
commensurate gains in our reproductions R-MVP and R-R3M. For example, R-MVP is at par with or only slightly less performant than MVP
(EgoSoup) on grasp affordance prediction and single-task control. We offer further discussion in §D.1.

Q2. Why don’t you evaluate models trained with 𝛼 = 1 (pure language generation)?

In preliminary experiments, we partially pretrained variants of V – Gen with values 𝛼 = 0.25, 0.5, 0.75; we focused on evaluating the
downstream performance of these representations in the context of the single task visuomotor control evaluation. With 𝛼 = 0.75 we observed
significant performance degradation on control tasks; furthermore, looking at the pretraining loss curves, we saw the reconstruction error
plateau early in training. We found that 𝛼 = 0.5 balanced learning, and allowed us to continue to push reconstruction error down while also
pushing the language generator loss (cross-entropy) lower; with 𝛼 = 0.25, we saw the opposite trend as with 𝛼 = 0.75.

These results are to be taken with a grain of salt, given the limited pretraining duration. However, we worry that with 𝛼 = 1, we might
suffer doubly for 1) never conditioning on language, which is so clearly helpful from our results, and 2) potentially fall into the same failure
mode as the R-M3AE multimodal masked autoencoder from Section §6 in the main text, overfitting to the language loss. In general,V – Gen
with 𝛼 = 0.5 already converges to a substantially higher reconstruction loss asV – Cond andV – Dual, as shown in the pretraining curves
in §B.3. That being said, it is a promising avenue for future work to understand if this is inherent or a problem with the specific optimization
procedure we used – perhaps changing the relative scaling of the two losses over the course of pretraining may mitigate this issue, or even
adaptively clipping the gradient updates depending on the relative contribution of the visual reconstructor or language generator.

Q3. Why does language during pretraining help for downstream tasks that don’t use language?

Consider a masked visual input of a “black, curved object above a wooden surface.” Given this information – and this information alone –
what is a plausible reconstruction? There are myriad objects that fit those percepts – a black, curved object: we could lbe looking at the
side of a bowl, the handle of a briefcase, the arm of a chair or stool, or in general, any number of possible options. A masked autoencoder
optimizing for reconstruction must embed in the representation of this input as many of the features possible to enable good downstream
reconstruction loss. It needs to model everything, as the visual context is under-specified and ambiguous. This compressed bottleneck is core
to learning a masked autoencoder, but the unfortunate byproduct of this – in light of a vast world of possibilities – are representations that
try to capture everything they possibly can.

Contrast this with a world in which you are told that the same visual context is associated with the language caption “lifting a black
coffee mug on the table.” What changes? The posterior over possible objects collapses down to the narrow slice of possibilities captured by
“black coffee mug”; under this new set of possibilities, what does the encoder focus on? What type of black coffee mug is on the table? If it is
being lifted, how is it being lifted? From what part of the object – the handle (seen in frame), or somewhere else? What are the features that
help further reconstruct the black coffee mug? The other nearby surfaces – what is the mug resting on (a wooden table? the wooden arm of
a chair?), is it at an angle? The additional visual context – what type of scene are we in – a living room, a coffeehouse? What else can I
specifically encode that helps me reconstruct this cup in high-fidelity? The edges of the cup, its texture, the way the light is reflecting off of
it in this particular visible context?

Conditioning on a language description both simplifies and focuses what I need to represent. My encoded features are no longer general
enough to cover the full range of objects that could follow from the visible context alone; instead, I can use that same capacity to represent
this specific context, as denoted by language. The encoder can focus on all of things left unspecified by language – arguably, the very things
we want a visual encoder for robotics to represent. Because we know that it is a “black coffee mug,” we can encode features around different
types of black coffee mugs as a first level, and at a second level, go deeper, and actually model the low-level features that are not tied to
semantics, but tied to core, perceptual primitives: the texture of the mug, the edges/boundaries of the object relative to other objects, even
the way light reflects off of the surface. These are the features that help in tasks like grasp affordance prediction (the edges of objects), and
when we learn joint representations of language and vision, the features that help with localization (grounding referring expressions) and
detection. Though speculative, we can attempt to make this concrete with results: if language is indeed reducing the space over plausible
reconstructions (and focusing the encoder), we might expect lower reconstruction error when language-conditioning vs. when we condition
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solely on the visual context alone. This is exactly what we show in §C.1, and a hint at whyVoltron is able to perform so strongly downstream
(even without language input). The simple presence of language during pretraining refocuses the features in our representations.

Q4. Why only evaluate frozen representations? Why not fully finetune the backbones for each downstream evaluation?

Both MVP and R3M [Radosavovic et al. 2022; Nair et al. 2022] only evaluate frozen visual representations, following a precedent set by a
long tradition of work in self-supervised learning from the computer vision community [Chen et al. 2020; Radford et al. 2021; He et al. 2022].
There are two reasons for the validity of evaluating frozen representations. First, the hope is that evaluating frozen representations (via
adapted per-evaluation “heads” on top) help us isolate the relative impact of what the representations contain – otherwise, the separation
between the standalone representations and the downstream evaluation parameters (and the co-mingling of the two when optimizing all
weights via gradient descent) becomes much less clear. Second, for many of the evaluations we look at, we have extremely small amounts
of data – on the order of 1000 examples for grasp affordance prediction, 10 - 20 demonstrations for single task and language-conditioned
imitation. There is a valid fear that full-finetuning the sizeable visual encoders vs. just the adaptation parameters (< 50K parameters) could
lead to extreme overfitting. In general, finetuning large-scale Transformers from minimal data is an active area of research in and of itself,
with work like adapters, low-rank approximations, and partial finetuning [Houlsby et al. 2019; Hu et al. 2021; Ben-Zaken et al. 2022].

Q5. Assuming pretraining datasets of (video, language) pairs feels restrictive; is there a way to leverage other sources of data?
While Voltron expects a dataset of videos and associated language narrations, there is a wealth of visually diverse and relevant data that

does not subscribe to this type signature:: datasets of standalone images from curated datasets [Deng et al. 2009; Geiger et al. 2012; Yu et al.
2015], curated images paired with language captions as in Conceptual Captions [Lin et al. 2014; Sharma et al. 2018], and large in-the-wild
datasets of images paired with text scraped from the internet [Schuhmann et al. 2021; Srinivasan et al. 2021; Schuhmann et al. 2022].

Luckily (though beyond the scope of this initial work), incorporating this data into the existingVoltron learning pipeline is straightforward;
for image data without language, we can simply “annotate” each example with an empty <NULL> token in the worst case, or alternatively,
with some minimal textual metadata (e.g., a class label, dataset descriptor, or even a URL if available). To accommodate for training on
variable length image contexts, a naive solution would be adopting frame dropout or padding; there are myriad ways to do this efficiently –
from Perceiver-based resampling of large patch sequences [Jaegle et al. 2021; Alayrac et al. 2022] to different position encoding schemes [Su
et al. 2021; Press et al. 2022], to more efficient attention variants [Beltagy et al. 2020].
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B Voltron Implementation & Artifacts

We provide complete implementation details for the variousVoltron models, from the small modifications to the Transformer block for
added pretraining stability, to the added structural components for embedding multimodal (vision and language) inputs. All of these details
are made explicit in our code release, linked on our project page.

Figure 8: Standard vs. Voltron Transformer Implementation. The Voltron Transformer Block is near-identical to the “standard”
Transformer block used in prior work in Vision Transformers, with exceptions marked in orange. Notably, we switch LayerNorm for RMSNorm,
a standard MLP with a GELU activation [Hendrycks and Gimpel 2016] with a SwishGLU activation, and adopt LayerScale for each residual
connection; these components are defined explicitly below the block definitions. In ablating these architecture modifications, we find no
impact on downstream performance, but increased pretraining stability.

B.1 Voltron Transformer Implementation
As mentioned in §4, we perform a series of modifications to the typical Transformer block used in prior work in the Vision Transformer and
Masked Autoencoding literature to help with pretraining stability; these changes are motivated by recent work from the NLP community on
training stable and performant Transformer models [Narang et al. 2021; Karamcheti et al. 2021a; Chowdhery et al. 2022].

We show the side-by-side comparison of the “standard” Transformer block implementation vs. the Voltron Transformer block in Figure 8.
The changes are three-fold:

• Using Root Mean-Square Normalization [Zhang and Sennrich 2019] over the default LayerNorm; not only does RMSNorm have fewer
parameters, but it has been shown to increase stability and performance [Narang et al. 2021].

• Using the SwishGLU activation [Shazeer 2020; Chowdhery et al. 2022] over the default GELU [Hendrycks and Gimpel 2016].
• Using LayerScale [Touvron et al. 2021] for scaling down the magnitude of residual connections; prior work has found this to have a
powerful stabilizing effect during pretraining [Karamcheti et al. 2021a].

We also provide pseudocode for implementing the various modifications in Figure 8 (bottom); these modifications are all simple and
transferable across Transformer implementations. Furthermore, as part of the no-language implementation in §6, we ablate the effects
of these modifications on performance; we find that these modifications do not change downstream performance, but significantly increase
pretraining stability, following our initial motivation.
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B.2 Jointly Processing Vision & Language

To incorporate language into the typical masked autoencoding pipeline, we add a series of small structural changes to handle 1) multi-modality,
2) sharing a Transformer decoder for both visual reconstruction and language generation, and 3) handling position encoding for both visual
patch embeddings and textual tokens.

Multimodal Encoder.We make the following adjustments to enable a Transformer encoder to embed multiple modalities. First, we project
both our learned “patch embeddings” (obtained as in a standard ViT, by learning a linear transformation of our flattened RGB patches of
size 𝑝 × 𝑝 × 3) and our pretrained language embeddings to the same space R𝑑 , where 𝑑 is the Transformer dimensionality (e.g., 𝑑 = 384
for a ViT-Small). While we learn our patch embedding end-to-end, we initialize our language embeddings from a pretrained (and frozen)
DistilBERT model [Sanh et al. 2019]; this is following R3M [Nair et al. 2022]. We pad each language annotation 𝑐 in our dataset to a maximum
length 𝐿 = 20 tokens, additionally storing a binary length mask to ensure that each Transformer block does not attend to padding.

Once projected into the Transformer’s embedding space, we add learned modality embeddings (e.g., an embedding for <IMG> and <LANG>)
to each of the respective inputs; we find that this better allows the Transformer to reason over different modalities. We initialize these
learnable embeddings via a truncated normal distribution, with scale 𝜎 = 0.02, following how other special embeddings are initialized in the
MAE and Vision Transformer literature [He et al. 2022].

The final step is for handling multi-frame contexts; we learn a set of frame index embeddings (e.g., for FRAME-1, FRAME-2, etc.) and add
these to the corresponding patch embeddings – i.e. we add the FRAME-i embedding to all patch embeddings from the first frame and so on.
This further allows us to distinguish individual frame patches from one another.

At this point, we concatenate the full sequence of flattened visual patch embeddings and language token embeddings, and feed them
through the stack of Transformer blocks that form the multimodal encoder. This output is fed to the decoder, in the same fashion as a
traditional masked autoencoder.

Shared Transformer for Reconstruction & Generation. As mentioned in §4, we make one crucial change to the standard Transformer
decoder in a masked autoencoder to additionally allow for language generation: namely adding a prefix mask over the language inputs [Raffel
et al. 2019]. The goal of this mask (as stated in the main text) is to prevent information leakage when decoding; this mask selectively zeroes
out dependencies in the multiheaded attention during training such that when generating language given a visual context, each language
embedding at a given timestep 𝑡 can only attend to prior generated language at timesteps < 𝑡 , as well as the entire visual context. This
masking operates in the same way as the original decoder masking described in Vaswani et al. [2013]; the attention scores for all “invalid”
inputs (> 𝑡 ) are set to 0, restricting the model from incorporating future predictions as it processes the sequence.

Apart from this, the only other change we make to the MAE decoder is learning a separate set of modality embeddings (as described in
the prior section) – i.e. embeddings for <IMG-DECODER> and <LANG-DECODER>; the reason for this is that the Decoder sees a series of <MASK>
embeddings representing the “unseen” visible context to reconstruct, as well as the new language context to generate (recall that because of
the 𝛼 gating, the language generator never sees language embeddings from the encoder). We add these to the corresponding embeddings fed
to the decoder, then resume the standard MAE decoding pipeline (reconstructing visual patches), and the language generation pipeline
(autoregressively generating the original annotation).

Position Encoding.We follow standard pratice in the masked autoencoding literature (and the same practice used by MVP), as position
encode each of the patch embeddings subject to a fixed (deterministic) 2D sinusoidal embedding that reflects both vertical and horizontal
positioning of each patch within a grid – this is taken directly from the original MAE codebase. To encode text, we use a similar strategy,
using a 1D sinusoidal embedding added to each token embedding in a sequence.

B.3 Pretraining Curves
To further contextualize our results and enrich some of the discussion §6 (and further on in the appendices), we include the pretraining loss
curves for each of the three Voltron models we train in this work –V – Cond,V – Dual, andV – Gen. The reconstruction error curves
for the three models can be found in Figure 9. In general, we find that the “trade-off” between language-conditioned reconstruction and
visually-grounded language generation is made concrete in the pretraining loss – both purely language-conditioned models (V – Cond, V
– Dual with 𝛼 = 0) converge to fairly low reconstruction error; however,V – Gen (with 𝛼 = 0.5) converges to a much higher reconstruction
error – due to the tension between optimizing for both reconstruction and language generation. We additionally note that adding even
simple, dual-frame contexts enables lower reconstruction error – even with the ViT-Small models, on the Sth-Sth dataset.
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Figure 9:Voltron Pretraining Learning Curves (Reconstruction Error).We visualize the reconstruction error over pretraining epoch
for each of the Voltron models. Note that each model learns differently, converging to different reconstruction errors: both the language-
conditioned models (𝛼 = 0) converge to low reconstruction error, with V – Dual showing that encoding and learning over multi-frame
contexts allowing for a better fit. The language generative modelV – Gen (𝛼 = 0.5) converges to a relatively higher reconstruction error,
showing the tension between balancing two disparate objectives.

B.4 Index of Released Artifacts
All of the following are linked in our code release and project page:

• Checkpoints forV – Cond,V – Dual, andV – Gen after 400 epochs of training on Sth-Sth.
• Checkpoints for our reproductions R-MVP and R-R3M (both with a ViT-S and RN-50 backbone).
• All index files (serialized frames/order seen during training) for reproducible pretraining.
• Intermediate checkpoints every 20 epochs for each of the threeVoltron models – along with optimizer states.
• Checkpoints for the ViT-Base variant of V – Cond (86M parameters vs. 22M for a ViT-Small).

The modeling code release additionally provides documentation and scripts for 1) training these models from scratch, and 2) downloading
and extracting representations from the pretrained models. The evaluation code release provides a unified API for the various problems we
evaluate on in this work.
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C Additional Results & Visualizations

We present additional results and visualizations to further support our claims from the main text. We provide additional discussion of 1) the
impact of language supervision (in the context of pretraining reconstruction loss), 2) a further discussion of masked vs. generative language
modeling as an objective, with an analysis of pretraining language modeling loss, 3) additional single task control results on the Adroit
dexterous manipulation environments, 4) qualitative trajectory rollouts from theV – Gen language-conditioned imitation policy, and 5)
additional qualitative intent scoring results.

Figure 10: Pretraining Curves for the No-Language Ablation Experiment. Training with language-conditioning (V – Cond) con-
verges to a lower reconstruction error while also learning faster, compared to no-language (single-frame MAE) pretraining.

C.1 Analysis: Impact of Language-Conditioning on Reconstruction Loss
As part of the ablation experiments in §6, we evaluate the impact of language-supervision during pretraining via a no-language ablation,
training a single-frame masked autoencoder with the Voltron Transformer architecture as described in §B.1; this resulting model does
not condition on language at all, but is otherwise identical to V – Cond. In the main text, we evaluated the corresponding no-language
model on a subset of evaluation tasks, showing a noticeable drop in performance across every evaluated application (even those without
language input) – thereby showing concrete evidence as to the value of language-driven pretraining. Here we expand on those results by
characterizing the behavior of bothV – Cond and the no-language ablation thereof in terms of their pretraining behavior.

Figure 10 shows the reconstruction error for both V – Cond (yellow) and the no-language ablation (gray) over the course of pretraining.
There are two noticeable properties of these curves: first, V – Cond converges to a substantially lower reconstruction error than the
same model trained without language. Second,V – Cond is able to learn faster, showing a steeper decline in reconstruction error earlier
on in training. Taken together, these curves suggest that language-conditioning is able to focus feature learning in a way that allows
the learned visual encoder to better encode masked contexts – especially considering that the visual reconstructor is by definition not
language-conditioned. Furthermore, from the aggregate evaluation results, the features learned as a result somehow generalize better across
the board, from low-level tasks like grasp affordance prediction, to high-level tasks such as control.

Figure 11: Pretraining Curves for the Generative vs. Masked Language Ablation Experiment. Compared to multimodal masked
language modeling (R-M3AE),V – Gen (𝛼 = 0.5) shows that with language generation as an objective, language modeling perplexity (PPL =
exp(NLL)) gradually decreases. R-M3AE overfits to language prediction almost immediately (PPL = 1), impacting its learned representations.
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Figure 12: Adroit – Single-Task Visuomotor Control Results. Visualization of the high-dimensional Adroit environments, comprised
of two dexterous manipulation tasks, with three camera viewpoints [Left]. Results (success rate for each of 𝑛 demonstrations with
𝑛 ∈ [25, 50, 100]) forVoltron and baselines (over 3 seeds) [Right]. Note the flipped trends relative to the Franka Kitchen results – notably,
the more “high-level” representations (from CLIP, R3M, or V – Gen) tend to do better on this task; yet, V – Gen is still outperforming
R-R3M and CLIP, showing the benefit of language-driven flexible learning.

C.2 Analysis: Generative vs. Masked Language Modeling
Later in §6, we raise the question: why generative (autoregressive) language modeling over masked language modeling? To help contextualize
this choice, we look at recent work on combining masked autoencoders (for vision) with masked language modeling (for text), through
multimodal masked autoencoders [M3AE; Geng et al. 2022]. We reimplement this M3AE model, pretraining on the same Sth-Sth dataset
used throughout this work, following the same standard of quality as for R-MVP and R-R3M. When we evaluate the corresponding R-M3AE
model, we notice substantially worse performance across all evaluation domains; in the main text we attributed this to overfitting during
pretraining – here, we provide that concrete evidence.

Figure 11 shows the language model perplexity over time for both the R-M3AE, and the V – Gen model (trained with 𝛼 = 0.5). Perplexity
(PPL) = exp(NLL) is a monotonic function of the cross-entropy loss; lower values are “better” with a lower bound value of 1.0. Almost
immediately, the R-M3AE model overfits to the masked language modeling task, hitting a “perfect” perplexity of 1 (loss of 0.0) within the
first 20 epochs. Contrast this withV – Gen that learns to gradually lower perplexity of the entire course of training, almost driving down to
a PPL of 1.0 by the 400th epoch. We attribute R-M3AE’s poor performance to this extremely early overfitting of the language loss, again
echoing the hypothesis that language generation is slightly more robust to these settings – predict short language captions given visual
context – than a masked language modeling objective. We note that this pretraining data (Sth-Sth) is significantly different than the data
used to train the original M3AE model in Geng et al. [2022]; the original M3AE work used Conceptual Captions 12M [Sharma et al. 2018], a
rich dataset of images paired with long, descriptive captions. Further work on extending M3AE models as in Liu et al. [2022] further pretrain
on text-only datasets such as Wikipedia and Toronto Books [Devlin et al. 2019] suggesting the need for diverse, broad coverage text when
training (multimodal) masked language models.

C.3 Results: Adroit Visuomotor Control
To supplement our single-task visuomotor control results, we run out evaluations on the Adroit dexterous manipulation tasks from the
R3M paper [Nair et al. 2022]. The two tasks we evaluate on, depicted in Figure 12 (left) consist of controlling a high degree-of-freedom
robotic hand (24-DoF) for the task of 1) relocating a ball on the table to a specified target position, and 2) reorienting a pen within the hand
to reach a target orientation. Given the innate difficulty of controlling a high-dimensional dexterous robotic hand over a 9-DoF fixed arm
manipulator, these tasks are evaluated with 𝑛 ∈ [25, 50, 100] demonstrations instead of 𝑛 ∈ [5, 10, 25] as with the Franka Kitchen evaluation.
In general, learning policies in this environment is difficult, especially from limited data.

Looking to the results we see that on this environment,V – Gen and R-R3M models tend to be the most performant, in contrast with the
Franka Kitchen results which favored V – Cond and V – Dual (the reconstruction-leaning models). Interestingly, this flipped trend seems
to suggest that even within single-task control, different tasks and environments seems to prefer different visual features to perform well
– in this case, the more high-level features under models such as R-R3M and V – Gen seem to be preferred. In a way, this makes sense;
unlike with Franka Kitchen, the actual background objects and interactions thereof – turning knobs, opening microwaves, or sliding doors
with clearly marked handles – seem more sensitive to low-level features (where on the microwave is the handle, which knob of the various
possible needs to be turned). In Adroit however, these tasks are on clean backgrounds, with individual objects; the high-level behaviors
instead that are more important (e.g., “is the ball getting closer to the target location?”). It would be an interesting direction for future work
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Figure 13: Real-World Language-Conditioned ImitationRollouts fromV –Gen.We visualize some rollouts from the best-performing
real-world language-conditioned imitation learning model,V – Gen. While some tasks – e.g., discarding the plate of used coffee pods in the
trash – prove hard for all methods,V – Gen shows smooth motion on a series of tasks, even when challenging visual distractors are present.
Videos with evaluation rollouts for each method are on our project page.

to further profile other “common” visuomotor control tasks along this axis, to get a better understanding of what visual representations must
capture to be useful in general tasks – to the extent of predicting ahead of time what features would be useful to aid in solving a task.

C.4 Qualitative: Real-Robot Language-Conditioned Policy Rollouts
While the experimental results in §5 capture the quantitative success rates of various methods for language-conditioned imitation, they do
not paint a picture of how these policies behave. In Figure 13 we show three different rollouts for the best-performingV – Gen model: a task
success (in-distribution), a task failure (in-distribution), and an example rollout from the visual distractor split. With the waypoint-based
action space described in §5, we generally see smooth motions; however, the failure mode of these policies are “oscillations” (Figure 13;
middle) where the policy collapses to predicting the same two waypoints repeatedly. We supplement these visualizations with full videos of
rollouts from each representation learning approach – these are all on our project page.

C.5 Qualitative: Additional Intent Scoring Visualizations
Figure 14 presents additional intent scoring qualitative visualizations for two other tasks from the WHiRL dataset [Bahl et al. 2022] –
specifically “lifting the lid off a pot” and “stacking cups.” In both scenarios, we see similar behavior to the results from §V of the main text:V
– Gen shows a propensity for not only tracking the key progress points in the videos for both human and robot agents, but also providing a
dense and smooth measure of intermediate progress. Both CLIP (ViT-Base) and R3M (Ego4D) unfortunately predict high-variance scores,
seemingly random across the video.
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D Data-Equivalent Reproductions & Reproducibility

In this section we provide additional discussion around two aspects of the reproduction and pretraining procedure discussed in §4:
1) preprocessing, and specifically the importance of selecting multiple images from the same context, and 2) how to operationalize the
representations from the visual encoder for downstream learning.

Figure 14: Additional Qualitative Zero-Shot Intent Scoring Examples. Given more videos of humans and robots performing similar
behaviors from the WHiRL dataset [Bahl et al. 2022], we evaluate the zero-shot intent scoring capabilities of V – Gen, R3M (Ego4D) and
CLIP (ViT-Base). In general, V – Gen continues to show a nuanced understanding of semantics over time, in general tracking key points in
each video smoothly, whereas both baselines are for the most part predicting random scores.

D.1 Additional Preprocessing Discussion
We described our preprocessing approach in §4: following the R3M paper, we sample five frames from each video clip for each epoch of
pretraining. Seeing multiple frames from the same visual context is minimally necessary for the R3M time-contrastive learning objective, but
we posit in this discussion (following the questions in Appendix A) that repeatedly sampling from the same visual context – even with a
reconstruction objective – allows for picking up on finer-grained changes within a context. The best evidence we have for this is in looking
at how prior work constructs their pretraining datasets.

The original MVP work [Xiao et al. 2022; Radosavovic et al. 2022] constructs static datasets of images by iterating through the various
video clips in their pretraining datasets – Sth-Sth, Ego4D [Grauman et al. 2022], 100 Days of Hands [Shan et al. 2020] – at a fixed rate, usually
from 0.2 to 1 frames per second. Given video clip lengths of 2 seconds, this means that in aggregate these pretraining datasets comprise
maybe 2-3 frames sampled from the same clip, if that. Contrast that with this work and R3M, sampling multiple frames from each video clip
for every pretraining epoch (for 400 epochs). This not only means that we are seeing the same context repeatedly, but also that we are seeing
different views of the same context; this can help tune reconstruction towards picking up on finer-grained features (e.g., if a high-capacity
model is able to memorize prior contexts given enough repetition).

This offers a (again, speculative) explanation of why Voltron models outperform MVP (EgoSoup) models that are both higher-capacity
and trained on orders of magnitude more data – but definitely requires further experiments to prove. In the meantime, it seems as though
taking steps to use as much of the pretraining datasets we have access to as possible is in our best interest.
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Figure 15: Default Feature Extraction in MAE Models. Prior work in masked autoencoding including MVP use the embedding corre-
sponding to a dummy <CLS> token appended to the Transformer input for downstream adaptation. While this is motivated in the supervised
learning setting, it is not clear what this embedding captures in the MAE setting, as it never receives explicit supervision. We find that
pooling the learned patch embeddings is strictly better.

D.2 Multiheaded Attention Pooling – Extracting Representations
There is a critical difference between pretraining visual representations and identifying the “right” way to use these representations for
downstream adaptation tasks. Especially for Vision Transformers trained as part of a masked autoencoder – as mentioned at the end of
Section §4 of the main text – identifying a method for extracting information from the learned representations is an open problem. The main
text states – by fiat – that we use multiheaded attention pooling [MAP; Lee et al. 2018] as suggested by Zhai et al. [2022] to operationalize our
learned representations for our downstream tasks. Here, we further contextualize that decision with a description of alternative approaches,
as well as comparative results (Table 5) that show the superiority of MAP-based “feature extraction” (referring to the process of taking the
output of a Vision Transformer and producing a dense, summary vector for downstream learning) over alternative approaches.

MVP and prior work in masked autoencoding with Vision Transformers [He et al. 2022] make an interesting choice when it comes to
extracting features: during pretraining, these works append a dummy <CLS> token to the input of the encoder and decoder in the masked
autoencoding pipeline (depicted in Figure 15). This “free” embedding is motivated by how Vision Transformers for supervised learning
(e.g., classification) are parameterized: in these settings, after encoding an input image, the <CLS> embedding is used as (the sole) input to a
linear projection into label space, thus obtaining supervision from the global loss function (e.g., the cross-entropy loss for classification).
Crucially, the <CLS> embedding in these cases gets direct supervision during training. However, in the masked autoencoding setting, this
<CLS> embedding is just passed through the various Transformer layers of the encoder and decoder, never obtaining any direct or indirect

Table 5: Feature Extraction Results.We evaluate various feature extraction strategies on the Franka Kitchen visuomotor control tasks
at 𝑛 = 10 demonstrations. We find that multiheaded attention pooling is strictly superior for all Vision Transformer backbones; even
mean-pooling over patch embeddings outperforms the default strategy from the MVP work that uses the frozen <CLS> embedding.

Architecture Default Extractor Mean-Pooling Multiheaded Attention Pooling (MAP)

R-R3M ViT-S 16.07 (Default = Mean-Pooling) – 14.73
R-MVP ViT-S 7.90 (Default = <CLS> Token) 9.50 26.73
V – Cond ViT-S – 19.07 27.33
V – Dual ViT-S – 17.40 33.07
V – Gen ViT-S – 15.67 30.33

V – Cond ViT-B – 19.40 30.80
V – Dual ViT-B – 16.40 37.27
V – Gen ViT-B – 15.73 32.13

CLIP ViT-B 17.73 (Default = Pool & Normalize) 16.33 22.20
MVP (EgoSoup) ViT-B 18.20 (Default = <CLS>) 20.13 33.87
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supervision; while it does attend to all other patch embeddings as a byproduct of the multiheaded attention mechanism, there is no guarantee
that this embedding captures or summarize all the useful information necessary.

Instead, recent work from the same authors of the original Vision Transformer [Zhai et al. 2022] eschew the <CLS> embedding completely
during training, instead identifying that two other strategies – mean-pooling all the patch embeddings output by the encoder, or using
multiheaded attention pooling [Lee et al. 2018] – are almost always preferable. As an aside – this work is what motivates Voltron models to
also do away with the <CLS> embedding.

Multiheaded attention pooling (MAP) can be thought of as a form of cross-attention with a learned query. Starting with a randomly
initialized query vector (or optionally, set of query vectors), a MAP block implements a shallow multiheaded attention operation, using the
initialized query vector to cross-attend over the patch embeddings output by the Vision Transformer – the resulting output is a “weighted”
combination of the individual patch embeddings that is shaped on a per-adaptation basis. We evaluate MAP-based extraction against
mean-pooling and any other “default” strategy (e.g., the <CLS> embedding used in MVP, the learned dense representation under CLIP) in
Table 5. We find that MAP universally outperforms all other strategies on the Franka Kitchen control tasks (with 𝑛 = 10 demonstrations),
informing our usage of MAP as the sole feature extraction approach throughout this work. Notably, we find that MAP-based extraction
when applied to the original model MVP (EgoSoup) released in the original work almost doubles success rate on downstream control tasks. We
even find that simple mean-pooling over patches outperforms the <CLS> embedding, further motivating alternate strategies.
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E Adapting Representations for Evaluation

The description of the adaptation pipeline described in §5 outlines all major details for the adaptation experiments for each evaluation domain;
the role of this section is to clarify any potentially ambiguous details, and further motivate some of the choices we make in implementing
each evaluation. In general, all of the details for adapting representations for each evaluation in the same manner used in this work are in
the released evaluation code repository that provides a unified harness for evaluating arbitrary visual representations on all evaluation
domains used in this work – this codebase is also linked from our project page.

In general, for each evaluation domain, we keep the adaptation architecture as simple as possible, and optimization parameters simple as
well. For all applications we use an AdamW optimizer [Kingma and Ba 2015] with the default learning rate of 1e-3, and weight decay of 0.01.

Grasp Affordance Prediction.We implement the adaptation head for the grasp affordance prediction task following recent work in learning
segmentation heads on top of vision transformer features, specifically following the procedure outlined in Segmentation Transformers via
Progressive Upsampling (SETR-PUP) [Zheng et al. 2021]. A PUP block is straightforward – we first extract all patch embeddings from the
output of our Vision Transformer encoder, using a shallow MAP block with the same number of seed vectors as patches output by the encoder.
We then reshape the extracted features into a grid, then stack a series of 4 upsampling blocks (channel depths of [128, 64, 32, 16], ReLU
activation) that consist of a 2D convolution followed by a bilinear upsampling, until we recover a grid of the same size of the original image.
We finally apply a spatial softmax, predicting distributions over each of the possible labels (“graspable,” “non-graspable,” “background”), and
compute our loss per-pixel. We optimize with a batch size of 64, for 50 epochs in total. Given the small size of the dataset, we find that there
is a great deal of variance across random initializations; we report results by running 5-fold cross-validation, taking the model with the best
performance across validation folds to compute final test statistics.

Referring Expression Grounding. We use a simple adaptation head for referring expression grounding that extracts a single dense
representation from our learned encoder via a shallow MAP block with a single seed vector (the default extractor for obtaining a vector
representation of a visual input). For representations that are not language-conditioned, we concatenate this vector with the language
embedding under the appropriate model – e.g., the CLIP text embedding for CLIP (ViT-Base) – or the DistilBERT language embedding for
pure visual models (e.g., MVP). We then feed this context through a 4-layer MLP (hidden dimensions of [512, 128, 128, 64], GELU activation)
that directly predicts bounding box coordinates as (𝑥,𝑦,width, height). We use a Huber loss to compute error. We optimize with a batch size
of 512, for 10 epochs in total, using the provided validation set for model selection.

Single-Task Visuomotor Control.We first extract a dense representation using a shallow MAP block (as described above), then follow the
exact procedure for evaluating both Franka Kitchen and Adroit policy learning as described in the R3M work [Nair et al. 2022]. Namely, we
concatenate the visual representation with the robot’s proprioceptive state, followed by a BatchNorm layer [Ioffe and Szegedy 2015]. These
are then fed to a 2-layer MLP (𝑑 = 256) that directly predicts action targets for computing mean-squared error against the ground-truth
actions. Following R3M, we run 20,000 gradient steps with a batch size of 32, evaluating the models online every 5000 steps on a heldout set
of 50 environments (fixed seed) – we report success rate subject to the best performing model from the online evaluation. We run three
seeds for each combination of viewpoint, number of demonstrations, and task.

Real-World Language-Conditioned Imitation. The full set of language instructions generated by ChatGPT can be found on our project
page. For adaptation, we first extract a representation as with the referring expression evaluation by using a shallow MAP block, and
concatenating the corresponding language embedding as appropriate. We concatenate this fused vector with the robot’s proprioceptive state,
and pass the corresponding embedding to a BatchNorm layer. Then, following recent work on real-world imitation learning [Mandlekar
et al. 2021], we only train a shallow 2-layer MLP with (𝑑 = 64) to predict action targets for computing mean-squared error against the
ground-truth waypoint actions. We optimize with a batch size of 256, and train for 10 epochs. As policy evaluation in the real-world is
expensive – especially for the five approaches we evalaute – we uniformly choose the last epoch checkpoint to perform evaluation rollouts.

Qualitative: Zero-Shot Intent Scoring. This is a zero-shot evaluation with no adaptation data, only applicable to the representation
learning models capable of “scoring” joint vision-language contexts: V – Gen, CLIP (ViT-Base), and R3M (Ego4D). We download videos from
the WHiRL dataset off of the WHiRL website: https://human2robot.github.io/. To generate plots, we sample frames at 2 FPS from each video,
center cropping and resizing each frame prior to passing it to each model.
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