
Adaptive Grey-Box Fuzz-Testing with Thompson Sampling
Siddharth Karamcheti∗

Bloomberg
CTO Data Science
New York, NY, USA

sidd.karamcheti@gmail.com

Gideon Mann
Bloomberg

CTO Data Science
New York, NY, USA

gmann16@bloomberg.net

David Rosenberg
Bloomberg

CTO Data Science
New York, NY, USA

drosenberg44@bloomberg.net

ABSTRACT
Fuzz testing, or “fuzzing,” refers to a widely deployed class of tech-
niques for testing programs by generating a set of inputs for the
express purpose of finding bugs and identifying security flaws.
Grey-box fuzzing, the most popular fuzzing strategy, combines
light program instrumentation with a data driven process to gen-
erate new program inputs. In this work, we present a machine
learning approach that builds on AFL, the preeminent grey-box
fuzzer, by adaptively learning a probability distribution over its
mutation operators on a program-specific basis. These operators,
which are selected uniformly at random in AFL and mutational
fuzzers in general, dictate how new inputs are generated, a core
part of the fuzzer’s efficacy. Our main contributions are two-fold:
First, we show that a sampling distribution over mutation opera-
tors estimated from training programs can significantly improve
performance of AFL. Second, we introduce a Thompson Sampling,
bandit-based optimization approach that fine-tunes the mutator
distribution adaptively, during the course of fuzzing an individual
program. A set of experiments across complex programs demon-
strates that tuning the mutational operator distribution generates
sets of inputs that yield significantly higher code coverage and finds
more crashes faster and more reliably than both baseline versions
of AFL as well as other AFL-based learning approaches.

KEYWORDS
binary fuzzing; coverage-based fuzzing; thompson sampling

ACM Reference Format:
Siddharth Karamcheti, Gideon Mann, and David Rosenberg. 2018. Adaptive
Grey-Box Fuzz-Testing with Thompson Sampling. In 11th ACM Workshop
on Artificial Intelligence and Security (AISec ’18), October 19, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3270101.3270108

1 INTRODUCTION
Program fuzz-testing, or “fuzzing.” [8, 11, 13, 14, 22, 26] is a set
of techniques that generate a variety of unexpected and different

∗Work completed while an intern at Bloomberg

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AISec ’18, October 19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6004-3/18/10. . . $15.00
https://doi.org/10.1145/3270101.3270108

1: // Core Algorithm for American Fuzzy Lop (AFL)
2: // time: Fixed time window to fuzz (e.g. 24 hours)
3: // queue: Queue of inputs that exercise new code paths.
4: while time has not elapsed do
5: parent , enerдy ← pick_input(queue)
6: for i ∈ range(energy) do
7: child ← parent
8: for j ∈ 1 to sample_num_mutations() do
9: mutation ← sample_mutation()
10: site ← sample_mutation_site()
11: child ← apply_mutation(mutation, child, site)
12: end for
13: path ← execute_path(child, code)
14: if (path is new) then queue ← child
15: end for
16: end while
Algorithm 1 AFL Grey-Box Mutational Fuzzing Algorithm

While pick_input picks parent seeds and energy intel-
ligently (based on discovery time, execution time, etc.),
the other fuzzing parameters (Functions sample_mutation,
sample_num_mutations, and sample_mutation_site) are ran-
dom, leading to inefficiencies.

inputs for a program, executing and recording them if they cover
parts of the program that have not yet been tested, result in crashes
or hangs, or identify any unexpected behavior. The most promising
feedback-based fuzzers are Grey-Box Mutational Fuzzers, such as
AFL (“American Fuzzy Lop”) [32], which rely on light binary in-
strumentation and genetic algorithms to iteratively mutate inputs
to increase code coverage. AFL has been broadly deployed, finding
vulnerabilities in several popular software applications including
Mozilla Firefox, Adobe Flash, and OpenSSL [33]. AFL selects a prior
parent seed to sample, applies a set of mutation functions (number
and type) to it, and executes the program with the new child seed,
adding the child to the queue if a new code path is discovered.

While there is a large body of work looking into improving grey-
box fuzzing (and specifically AFL) with data-driven techniques,
the work is concentrated on selecting the most promising parent
inputs (or input subsequences) to mutate. For example, Lemieux
and Sen [18] propose a new variant of AFL called FairFuzz, that
focuses on mutating seeds that hit rare branches in the program
control flow graph. Alternatively, Rajpal et al. [24] use deep neural
networks to learn which parts of an input correspond tomagic bytes
or boundaries that shouldn’t be fuzzed (e.g. PDF headers), focusing
fuzzing efforts on less constrained byte locations. One relatively less
explored area is improvements from tuning the mutation process

ar
X

iv
:1

80
8.

08
25

6v
1

 [
cs

.A
I]

 2
4

A
ug

 2
01

8

https://doi.org/10.1145/3270101.3270108
https://doi.org/10.1145/3270101.3270108
https://doi.org/10.1145/3270101.3270108

Mutation Operation Granularity Notes

Bitflips bit Flip single bit
Interesting Values byte, word, dword NULL, -1, 0, etc.
Addition byte, word, dword Add random value
Subtraction byte, word, dword Subtract random value
Random Value byte(s) Insert random value
Deletion byte(s) Delete from parent
Cloning byte (unbound) Clone/add from parent
Overwrite byte (unbound) Replace with random
Extra Overwrite byte (unbound) Extras: strings scraped
Extra Insertion byte (unbound) from binary

Table 1: List of mutation operators utilized by AFL.

itself. For example, consider a simple program that performs carry
addition of two command line inputs; in this case, any mutation
operators that insert strings or non-numeric types will result in
inputs that trigger top-level, error-handling code. Instead, we want
to prioritize mutators that result in interesting numeric values, to
create inputs that penetrate deep into the program.

In this work, we show how to learn a mutation operator distribu-
tion for generating new children that significantly improves upon
AFL – and this simple process gives larger gains than state-of-the-
art parent selection techniques. We reformulate AFL’s fuzzing loop
as a multi-armed bandit problem, where each arm corresponds to
a different mutation operator, and show that by using Thompson
sampling [1], we can learn a better distribution over operators adap-
tively, during the course of fuzzing an individual program, with
drastically better results. Our results on the DARPA Cyber Grand
Challenge Binaries [7], a set of programs developed by humans
and riddled with natural bugs show that our Thompson-sampling
approach results in significantly more code coverage and more
crashes found than other state-of-the-art fuzzers, including AFL
version 2.52b, and FairFuzz [18]. For completeness, we also evaluate
on the LAVA-M synthetic bug dataset [10] where we show less
conclusive results, possibly due to the small sample size (the set
consists of only 4 programs), and the synthetic nature of the bugs.
Taken together, our experiments on over 75 unique binaries show
that tuning the mutator distribution adaptively yields significant
benefits over existing fuzzers like AFL and FairFuzz.

2 FUZZING OVERVIEW
Fuzzers are categorized by the amount of transparency into the
program under test that they require. Black-Box fuzzers [12, 15,
17, 30] operate by generating a large number of random inputs
very quickly without any information on the code being tested.
The simplest type of black-box fuzzers are random fuzzers, such
as Radamsa [15], and ZZUF [17]. These work by sampling string
lengths, then sampling characters or bits to generate uniformly
at random. These types of fuzzers run extremely quickly, and are
commonly used to fuzz tools for checking that user-supplied strings
meet certain requirements (e.g. password checkers). While they can
quickly find shallow bugs at the top levels of the programs under
test, they take an extremely long time to find deeply nested bugs.

At the other extreme of program transparency, White-Box
fuzzers [11] and symbolic execution tools [2, 9, 20, 21, 23, 28] like
KLEE [6] and SAGE [14] symbolically manipulate the source code
to deterministically discover input sequences that explore every
code path. As they are able to walk the entire source code tree, they
can discover bugs in nested code. These tools operate on intermedi-
ate representations of code like the LLVM IR, or assume high-level
source code information. Such tools use constraint solvers to ex-
plicitly solve for inputs that reach certain branching points in code,
and as a result degrade as programs grow large [2, 16].

Grey-Box Fuzzing
Between these two extremes areGrey-Box fuzzers [4, 18, 19, 25, 27,
32]. These fuzzers assume lightweight instrumentation can be in-
jected into programs or binaries to determine coverage. This allows
fuzzers to recognize when they have found inputs that exercise new
code paths. While there are different types of grey-box fuzzers, by
far the most effective are mutational fuzzers, which use genetic al-
gorithms to “mutate” a parent input into a new child input, allowing
one to reason about how similar inputs affect program execution.

A general sketch for mutational grey-box fuzzing can be found
in Algorithm 1. While the algorithm depicted in the figure is spe-
cific to AFL, the preeminent mutational grey-box fuzzer, the gen-
eral algorithm takes the same form across all mutational fuzzers,
with different heuristics driving the key functions (pick_input,
sample_mutation, etc.). As a brief summary, these fuzzers work
by maintaining a Queue of inputs that exercise different code paths.
The fuzzing process is then reduced to the two loops on lines 6
and 8 of Algorithm 1, with the outer loop (line 6) responsible for
picking an input and a corresponding energy value from this Queue
(pick_input). One can think of the energy as the amount of time
to spend fuzzing a given parent input (the number of iterations to
run the inner loop from Algorithm 1). The inner loop (line 8) is
then responsible for creating new child inputs from the parent, by
applying a random number (sample_num_mutations) of specific
mutation functions (sample_mutation). These mutation functions
include random bit-flips, random byte-flips, adding “magic” bytes,
arithmetic operations at the bit level, etc., and are applied to the
chosen input at a particular byte offset (sample_mutation_site)
to create a new child candidate. A comprehensive table of the mu-
tation operators used by AFL can be found in Table 1. This child
candidate is then executed, and if it exercises an code path that is
different from those exercised by the inputs already logged, it is
added to the queue.

2.1 AFL
One of the most popular and widely-adopted grey-box fuzzers is
“American Fuzzy Lop” [32] or AFL. Since we build our approach on
top of AFL, it is worthwhile to understand its strengths as well as
its limitations. The core of AFL’s algorithm is detailed in Algorithm
1; however, while this highlights the main loop behind AFL, it fails
to highlight some key details.

The first is AFL’s feedback-driven coverage mechanism. AFL is
efficient and intelligent; during fuzzing, it can execute hundreds
of inputs per second, traversing a large amount of the program
input space all while optimizing for code coverage. It does this by

injecting lightweight instrumentation into the program under test,
to track the path an input takes through the program. It works as
follows: AFL first assigns each basic block in the program a random
ID. These block IDs then compute edge IDs (identifying transitions
from one basic block to another, or edges in the program control
flow graph), allowing AFL to track paths. Specifically, AFL stores
a bitmap that maps transitions to rough “hit-counts” (number of
times a given transition has been observed for a single input). Any
input that observes a transition that has not yet been seen is deemed
“interesting,” and is added to the Queue (line 14 of Algorithm 1).
This tracking instrumentation can either be injected at compile
time (by compiling programs with the afl-gcc or afl-clang compilers
that ship with AFL), or at runtime via the QEMU emulator, allowing
AFL to fuzz closed-source binaries. In our experiments, we work
exclusively on binaries, utilizing this QEMU mode.

The second detail pertains to AFL’s implementation of pick_-
input, or how to choose which queue entry to fuzz next. Note
that on line 5 of Algorithm 1, the pick_input function consumes
the queue as an argument, and returns two outputs, the “parent”,
or the actual queue entry to mutate into new children, as well
as an “energy” value, corresponding to how long to spend fuzzing
(iterations of the inner loop starting on line 6) the given parent. AFL
implements this function based solely on heuristics: namely, AFL
defines a calculate_score function that assigns energy for each
queue entry, based on the following factors: coverage (prioritize
inputs that cover more of the program), execution time (prioritize
inputs that execute faster), and discovery time (prioritize inputs
discovered later).

The final detail pertains to AFL’s modes of operation. The fuzzer
is currently shippedwith two distinct modes,AFL and FidgetyAFL,
as they are referred to by AFL’s developer, as well as in prior work
[18, 31]. While the core of both versions of AFL is the loop depicted
in Algorithm 1, the key difference is that standard AFL runs a series
of controlled, deterministic mutations on each parent input, prior
to starting the main fuzzing loop. These deterministic mutations
operate at every bit/byte of each input in the queue sequentially,
and include the following operations [34]:

• Bit flips, with varying lengths and offsets.
• Arithmetic operations (add/subtract small integers).
• Insertion of “interesting” integers (from a finite set including
0, 1, MAX/MIN_INT, etc).

The goal of these deterministic mutations is to create test cases that
capture fixed boundaries in input space. However, prior work [3, 4],
as well as the lead AFL developer [31] note that in many programs,
one can obtain more coverage and discover more crashes by omit-
ting this deterministic stage. Indeed, AFL without this deterministic
stage is exactly FidgetyAFL, or the loop depicted in Algorithm 1
(AFL run with the “-d” parameter). In our experiments, we utilize
both AFL and FidgetyAFL as baselines (FidgetyAFL is almost always
the stronger fuzzer of the two).

Both versions of AFL ultimately enter the loop in Algorithm 1.
AFL chooses a number ofmutations to apply (sample_mutations()
on line 8 of Algorithm 1) uniformly at random from the set of powers
of 2 between 21 to 27. The mutation operators (sample_mutation()
on line 9 of Algorithm 1) are also picked uniformly at random from
the set of 16 operators in Table 1. The site the given mutation is

applied (sample_mutation_site() on line 10 of Algorithm 1) is
also chosen uniformly at random over the bytes in the parent.

3 RELATEDWORK
There is a large body of work focused on learning better heuristics
for picking inputs to fuzz (pick_input on line 5 of Algorithm 1).
Both Böhme et al. [3] and Rawat et al. [25] learn to pick inputs in the
queue, in addition to energy values, to maximize the probability of
hitting a desired part of the program, or exercise a desired code path
(if one wants to fuzz a certain function in the program, they should
prioritize inputs in the queue that exercise code paths that utilize
the given function). Both these approaches use lightweight learning
(in the case of Böhme et al. [3], a learned power schedule) to build
on top of AFL, and show strong results. Furthermore, Böhme et al.
[4] introduce a set of algorithms for optimizing fuzzing, based on
a probabilistic model of coverage. They introduce AFLFast, a AFL-
variant that introduces new search strategies and power schedules
to maximize code coverage. Specifically, the authors are able to
show that their approach beats AFL and FidgetyAFL [31] on the
GNU binutils, a set of standard Linux programs.

More recently, Lemieux and Sen [18] introduce FairFuzz, another
technique to optimize pick_input. Specifically,the authors work
under the assumption that the best way to find crashes in programs
and improve code coverage is to prioritize inputs that exercise rare
branches. By focusing on fuzzing these inputs, FairFuzz generates
many new inputs that hit the extremes of a program, finding a
multitude of bugs. FairFuzz also optimizes the selection of mutation
sites (pick_mutation_site) by tracking which bytes in the input
lead to changes in control flow. They use this to prevent fuzzers from
touching volatile regions of the input buffer. The results in [18] show
that FairFuzz is significantly more effective than current versions
of AFL, FidgetyAFL, and AFLFast – making it the most effective
grey-box fuzzer released at the time of this work. Related, Rajpal
et al. [24] use deep neural networks to select mutation sites (pick_-
mutation_site), in order to prevent fuzzers from creating trivial
inputs that fail error handling code or syntax checks. Specifically,
the authors show that they can effectively fuzz PDF parsers, and
generate non-trivial PDFs.

All the above fuzzers leave the distribution over mutation opera-
tors untouched, defaulting to the uniform distribution that comes
with AFL. One of the few works that examines the mutation distri-
bution is that by Böttinger et al. [5] that frames grey-box fuzzing as
a reinforcement learning problem, and use Q-Learning [29] to learn
a policy for choosing mutation operators. While this approach is
quite interesting, they only evaluate on a single program (a PDF
parser), with a single queue entry that remains fixed as opposed
adjusting the queue during fuzzing. Moreover, their baseline is a
random fuzzer not AFL. Here, we compare against state of the art
fuzzers on a standard set of programs.

4 APPROACH
In this section, we present the details of our approach for estimating
distributions over grey-box fuzzing mutators. Section 4.1 presents
a couple of motivating examples, Section 4.2 specifies a method for
learning a better stationary distribution over mutators (to verify
that there do exist better mutator distributions than the uniform

distribution used with AFL), and Section 4.3 presents our adaptive,
Thompson Sampling method.

4.1 Motivating Examples
To understand the effect the mutator distribution has on fuzzing
efficiency, we present two motivating examples. Both the examples
we walk through are part of the DARPA Cyber Grand Challenge
(CGC) dataset [7]. They have different functionality and varying
levels of complexity, as one would expect of real-world, human-
written programs.

4.1.1 ASCII Content Server. The first example can be found in
Listing 1, a simplified excerpt of the C program ASCII_Content_-
Server, which demonstrates top-level functionality for a simple
text-based HTTP web server. The program supports functionality
for starting up a web session, in which a user (over STDIN) can issue
a series of commands for creating web pages (“SEND”), looking up,
interacting, and visualizing pages (“QUERY”, “INTERACT”, “VISU-
ALIZE”), and issuing API calls (“REQUEST”). Sessions can consist
of arbitrarily many of these commands, as they are all specified
over STDIN. However, note that each command begins with the
keyword (as a string) of the given type, followed by the data for
the given command (e.g. “REQUEST <DATA>”).

Consider the mutation operators listed in Table 1 in the context
of this program. Many of these mutators operate randomly, at the
bit level (e.g. Bitflips, Addition/Subtraction). Especially because
the site of these mutation operators is also uniformly distributed,
these bit-level operators prove to be less effective at producing good
inputs for the program, as they have a good chance of colliding with
the keyword strings (e.g. “REQUEST”) that dictate the command.
As such, the corresponding child inputs will, with high likelihood,
end up malformed, triggering the default error handling code on
line 26. This prevents the fuzzer from exploring deeply into the
program, as with a uniform distribution over mutators, interesting
inputs will only be produced with low likelihood.

Instead, to increase the likelihood of generating interesting in-
puts, reconsider the mutators in Table 1. Namely, consider the mu-
tators for Inserting/Overwriting “Extras” (in this case, the keyword
strings “REQUEST,” “QUERY,” etc.), and for Cloning bytes from the
parent seed. Both these mutators are significantly more likely to
produce interesting inputs, as they are more likely to result in well-
formed inputs to pass the syntactic check in the ReceiveCommand
function. Indeed, especially later in the fuzzing process, one might
expect the Clone mutator to be even more effective, as it copies
longer and longer sessions of commands into child inputs, allowing
for more complex sessions that could trigger non-trivial bugs.

4.1.2 ASL6 Parser. The second example can be found in Listing
2, a simplified excerpt of the C program ASL6parse. ASL6parse
provides functionality for a recursive parse for the ASL6 formatting
standard, a type-length-value format akin to ASN.1 encoding. The
core of the functionality provided by this program involves reading
arbitrarily long ASL6-encoded strings over STDIN, decoding them
into a more easily human-readable format, and then pretty-printing
the results to screen. Each ASL6 string takes the format of a series
of messages, where each message consists of three values: 1) a type
or class, 2) a length value, specifying how many characters the

1 // Runs the ASCII Content Server
2 int main(void) {
3 // Initialize server
4 InitializeTree();
5

6 // Respond to commands
7 Command command, int more = {}, 1;
8 while (more) {
9 ReceiveCommand(&command, &more);
10 HandleCommand(&command);
11 }
12 return 0;
13 }
14

15 // Receives and parses an incoming command
16 int ReceiveCommand(Command *command, int *more) {
17 char buffer[64], size_t bytes_received;
18 read_until(buffer, ':', sizeof(buffer));
19

20 switch (buffer) {
21 case "REQUEST": command->c = REQUEST; break;
22 case "QUERY": command->c = QUERY; break;
23 case "SEND": command->c = SEND; break;
24 case "VISUALIZE": command->c = VISUALIZE; break;
25 case "INTERACT": command->c = INTERACT; break;
26 default: more = 0; return -1;
27 }
28 parse_data(command, read_rest(), more);
29 return 0;
30 }
31

32 // Handle a command, and update/read from the DOM
33 void HandleCommand(Command *command) {
34 switch (command->c) {
35 case REQUEST: ServePage(Lookup(command->n));
36 ...
37

Listing 1: ASCII_Content_Server.c

Simplified extract capturing Program ASCII_Content_-
Server from the DARPA CGC binaries. Provides functional-
ity for a simple, text-based HTTP-like web server.

given value has (to facilitate reading), and 3) the string value, which
consists of either a primitive, or one or more nested messages.

Unlike the prior program, there is no reliance in ASL6parse on
any keywords, or specific string values; indeed, each tag/class is
found by taking the bitwise-and of the initial bits, with a constant
“TAG_MASK.” As such, all that is necessary to explore deeper into
the program is to generate more complex strings that loosely follow
the rather relaxes ASL6 format. If we consider the mutators from
Table 1, we see that those that prioritize random insertion, coupled
with those arithmetic operators (for bumping the length values)
are more likely to produce interesting inputs for the program than

1 #define PRIM_MASK 0x20
2 #define CLASS_MASK 0xC0
3 #define TAG_MASK 0x1F
4

5 // Runs the Parser
6 int main(void) {
7 unsigned sz, uint8_t b[MAX_SIZE];
8 receive(STDIN, &sz, sizeof(sz));
9 read_exactly(STDIN, b, sz);
10 pretty_print(decode(b, 0, (unsigned) b,
11 (unsigned) b + sz));
12 }
13

14 // Decode the T-L-V format str into an element
15 element *decode(uint8_t *b, unsigned depth,
16 unsigned st, unsigned sp) {
17 element *e = malloc(sizeof(element));
18

19 // Parse out class and tag (message)
20 e->primitive = (b[0] & PRIM_MASK) == 0;
21 e->cls = (b[0] & CLASS_MASK) >> 6;
22 e->tag = (*b & TAG_MASK);
23

24 // Parse out additional data
25 int bread = parse_length(b + 1, e);
26 e->data = b + bread;
27

28 // Recursively Parse
29 if (!e->primitive) {
30 uint8_t cur = e->data;
31 while (1) {
32 sub = _decode(cur, depth + 1, st, sp);
33 append_sub(e, sub) < 0);
34 cur = sub->data + sub->length;
35 if (cur >= e->data + e->length) break;
36 }
37 }
38 return e;
39 }

Listing 2: ASL6parse.c

Simplified extract capturing Program ASL6parse from the
DARPA CGC binaries. Provides functionality for parsing
and pretty-print a type-length-value formatted string (simi-
lar to ASN.1 encoding).

those that overwrite/insert string values – an effective distribution
would prioritize the former operators, and de-prioritize the latter.

It is interesting to note that across two different programs, there
is a great need for drastically different distributions over mutators
(note how the most effective mutators for ASCII_Content_Server
are the least effective for ASL6parse). It is clear that a solution that
learns a non-uniform distribution over mutators would improve the
likelihood of generating inputs that penetrate deeper into programs.

Furthermore, this solution needs to be adaptive, able to learn which
operators are more effective than others on a per-program basis.

4.2 Estimating Distributions Empirically
Our hypothesis is that best way to optimize fuzzing is to learn
mutator distributions adaptively. However, it is necessary to assess
whether there exist better fixed mutator distributions than the uni-
form distribution utilized by AFL, to get a sense of exactly how
inefficient AFL’s current heuristics are. To do this, we outline an
approach that finds a fixed distribution by analyzing and extrap-
olating from a set of full fuzzing runs on a set of programs that
are unrelated to those we test on. Intuitively, the goal here is to
use data collected on unrelated programs to learn a new mutator
distribution that performs better than AFL out-of-the-box. While
this empirically estimated stationary distribution is not optimal for
an individual program (as it is not tuned adaptively), our approach
for learning it has two key benefits: 1) it lets us get a sense of AFL’s
current inefficiency while providing a strong point of comparison
for our adaptive Thompson Sampling strategy, and 2) it allows us
to provide intuition as to how to use data to inform the choice of
mutator distributions, before delving into the adaptive, Thompson
sampling approach detailed in the next section (Section 4.3).

Our approach for estimating a better stationary distribution over
mutators is straightforward. Recall that, as with most fuzzers, the
metric we are optimizing for is code coverage – we wish to maxi-
mize the number of code paths we discover (again, other metrics
like crashes or hangs are too sparse and random to serve as a mean-
ingful success signal). Our approach is simple: the best indication of
mutation operators that will be successful in the future are mutation
operators that have been successful in the past.

Consider the following: Let ck correspond to the number of times
mutation operator k was utilized in creating a successful input. A
successful input is a child mutant that explores a new code path. We
can track this quantity by adding some lightweight code to AFL to
log mutation counts for every mutant. With these aggregate counts,
we can estimate a new distribution as follows:

pk =
ck∑K

k ′=1 ck ′
(1)

Where pk is the probability of choosing mutation operator k , from
theK possible mutations. Note that the role of the denominator here
is solely to make sure the probabilities pk sum to 1. This estimation
of the probability parameters based on success counts is exactly
Maximum Likelihood estimation. Results capturing the efficacy of
this approach can be found in Section 6.2.

4.3 Thompson Sampling
In this section, we derive our approach for learning the distribution
over mutation operators adaptively. The intuition of this approach
is similar to that of the prior section; we should prioritize mutation
operators that have been successful in the past. However, unlike
before, where we estimated our distribution at the end of many
complete fuzzing runs on a large suite of programs, here we don’t
have the same amount of data, nor the same measure of confidence
because we are working on an individual program, where we start
estimating a new distribution after just a short period of fuzzing.

Instead, we need an approach that allows us to factor in our con-
fidence about our estimates, starting off cautious, then becoming
more sure as we gather more data. One approach that gives us this
behavior is Thompson Sampling [1].

Thompson Sampling is an approach for the classic Multi-Armed
Bandit problem. In a Multi-Armed Bandit, the setup is as follows:
there are K slot machines (“bandits”), each with an unknown prob-
ability of paying off. The problem proceeds in rounds, and in each
round, we can select one of the K bandits to play. Depending on the
family of distributions utilized for each bandit, we observe some
reward. For example, in the Bernoulli bandit setting, the payoff for
each bandit is drawn from a Bernoulli distribution, parameterized
by θk for a given bandit k – bandit k will payout 1 with probability
θk , and 0 with probability 1 − θk .

Intuitively, each θk corresponds to a probability of success of
playing a given bandit. To maximize reward, then, it is best to play
the arm with the highest success probability. In other words, if
we had full information, and knew the parameters θ1,θ2, . . . θK
for each bandit arm, the optimal strategy would be to always play
kbest = argmaxk θk . However, we don’t have this information. As
a result, we need to trade off between trying various bandits to
estimate their probabilities of payoff, and committing to the bandit
that seems the best so far.

We set up our problem of adaptively estimating a distribution
over mutators as a Multi-Armed Bandit problem as follows: Let
each mutation operator 1, 2 . . .K (the 16 operators detailed in Table
1) be a different bandit. For each mutation operator, let θk be the
likelihood that the corresponding operator is used to generate a
successful input (an input that increases code coverage). Finally,
instead of picking the “best” armk , like in the standardMulti-Armed
Bandit section, set the distribution over mutation operators as:

pk =
θk∑K

k ′=1 θk ′
(2)

where pk is the probability of choosing operator k during fuzzing.
With this, all that’s left is to work out the details for handling

the exploration-exploitation tradeoff, and best learn each θk .

4.3.1 Exploration-Exploitation. Thompson Sampling frames the
exploration-exploitation trade-off as a Bayesian posterior esti-
mation. Returning to the traditional Multi-Armed Bandit set-
ting, we start with a prior distribution on each of the K bandits
π (θ1),π (θ2), . . . π (θK). This prior is initially set to reflect the start-
ing belief of how the parameters of each bandit are set (in our
case, our prior is the AFL distribution over operators – namely,
a uniform distribution). Then, let Dt be the data we have col-
lected in the first t rounds of play, which we can represent by
the pairs (n10,n11), (n20,n21), . . . (nK0,nK1), where nk1 is the num-
ber of times the given arm resulted in a payoff of 1, and where nk0
is the number of times the given arm resulted in a payoff of 0. So if
we look at all the data we collected by round t , across all arms, we
see that

∑K
k=1(nk0 + nk1) = t .

Suppose we’ve just completed round t , observing data Dt . We
want to combine our data Dt with our prior knowledge, and collect
the posterior distribution for each arm. These posterior distributions
π (θ1 | Dt),π (θ2 | Dt), . . . π (θK | Dt) represent our rationally
updated beliefs about the values of θ1,θ2, . . . θK . Once we have

these posterior distributions, the question remains: which bandit
should we play at the t + 1’st round? A greedy approach would
be to play the bandit that has the highest probability of being the
best (the bandit k with the highest θk) – yet this is all exploitation,
and no exploration. The Thompson Sampling approach instead
compromises in an interesting way: For each bandit k , sample
θ̂k ∼ π (θk | Dt). Then, play bandit k̃ = argmaxk θ̂k . Note that this
k̃ is a sample from the posterior distribution over which bandit has
the highest probability of paying off. As we become more confident
about which is the best bandit (as we collect more data!), we’ll
choose this bandit more frequently – which is exactly what we
wanted. Next, we work out the details for computing the posterior
distributions.

4.3.2 The Beta/Bernoulli Model. In our setup, we utilize Bernoulli
distributions as the payoff distributions (we want 0/1 reward). We
choose our prior distributions from the Beta family, for it’s conju-
gacy to the Bernoulli distribution:

θ ∼ Beta(α , β)

π (θ) ∝ θα−1(1 − θ)β−1

where π (θ) is supported on the interval (0, 1), and α , β are positive
real valued parameters.

Since the K bandits are independent (by assumption), we can
update their posterior distributions independently. For each θk , the
prior is taken to be θk ∼ Beta(αk , βk). The likelihood function for
θk is Pr(nk0,nk1 | θk) = θ

nk1
k (1−θk)

nk0 . We calculate the posterior
density to be:

Pr(θk | Dt) ∝ Pr(θk) Pr(Dt | θk)

∝ θαk−1k (1 − θk)βk−1 × θ
nk1
k (1 − θk)

nk0

= θ
αk−1+nk1
k (1 − θk)βk−1+nk0

Thus θk | Dt ∼ Beta(αk +nk1, βk +nk0). Using this expression, we
can update our posterior distributions with the data observed after
each round, and choose the next bandit (next mutator) using the
sampling approach described above.

The above process is straightforward to implement in our fuzzing
setup. To update our posteriors, we need only track howmany times
each operator k was involved in generating a successful (nk1) or
unsuccessful (nk0) input.

4.3.3 Credit Assignment. There is one slight complication; in a
standard Multi-Armed Bandit setting, each pull of a bandit arm
immediately translates to the outcome – either 0 or 1 reward. In
this way, we can exactly assign the score to the corresponding
bandit. However, in our scenario, we sample an arbitrary number of
mutations to apply before seeing whether or not an input results in
additional code coverage (see line 8 of Algorithm 1). This means we
can possibly seemany different mutation operators (up to 128, given
AFL’s default parameters) involved in the creation of a new input.
With this, it is hard to assign the proper reward to each mutation
involved, as it’s unclear exactly which mutation operator led to the
success (or failure). Do we assign each mutation operator involved
a score of 1 if the final outcome is successful? What happens when
the same mutation operation shows up multiple times?

30 Min 60 Min 90 Min 120 Min Wins / FidgetyAFL

AFL 0.58 ± .03 0.60 ± 0.03 0.60 ± 0.03 0.60 ± 0.03 6
FidgetyAFL 0.81 ± .02 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 —
FidgetyAFL, n=1 0.78 ± 0.03 0.79 ± 0.03 0.79 ± 0.03 0.80 ± 0.03 34
FidgetyAFL, n=2 0.83 ± 0.03 0.84 ± 0.02 0.84 ± 0.02 0.84 ± 0.03 42
FidgetyAFL, n=4 0.84 ± 0.02 0.85 ± 0.02 0.84 ± 0.02 0.85 ± 0.02 44
FidgetyAFL, n=8 0.83 ± 0.02 0.82 ± 0.02 0.83 ± 0.02 0.84 ± 0.02 41
FidgetyAFL, n=16 0.78 ± 0.03 0.80 ± 0.02 0.79 ± 0.02 0.79 ± 0.02 31
FidgetyAFL, n=32 0.75 ± 0.02 0.75 ± 0.02 0.74 ± 0.02 0.75 ± 0.02 24
FidgetyAFL, n=64 0.71 ± 0.03 0.71 ± 0.03 0.70 ± 0.03 0.71 ± 0.03 20
FidgetyAFL, n=128 0.67 ± 0.03 0.67 ± 0.03 0.67 ± 0.03 0.67 ± 0.03 14

Table 2: Results for sample_num_mutations experiments. Numbers in the first four columns correspond to mean and standard
error of relative coverage statistics, across the 75 training programs, while the “Wins / FidgetyAFL” column corresponds to
how many times the given strategy discovered more code paths than FidgetyAFL, the best baseline.

This is known as the credit assignment problem, and it slightly
muddles the approach outlined above. However, we find that by
making one slightly minor change, we can get around this problem.
We hypothesize that the high variance in the number of mutations
is the problematic piece; if instead, AFL chose a smaller, constant
number of mutations (i.e. replace the loop iteration count on line 8
of Algorithm 1with a small constant), the effect of credit assignment
would be diminished. To do this, we return to the training program
set utilized in Section 4.2. Much like we learned a good stationary
mutator distribution from data, we can similarly learn a good small
constant, for the number of mutation operators to apply. If the
corresponding AFL with a fixed number of mutations performs
as well as or better than AFL (or FidgetyAFL), then it might serve
as a good base for our Thompson Sampling implementation. The
experimental setup and results for estimating a fixed number of
mutations to apply can be found in Section 6.1.

5 DATASETS
We utilize two program datasets to highlight the efficacy of our
approach: the DARPA Cyber Grand Challenge binaries [7] and the
LAVA-M binaries [10].

5.1 DARPA Cyber Grand Challenge
The DARPA Cyber Grand Challenge binaries are a set of 200 pro-
grams released by DARPA as part of an open challenge to create
tools for automatically finding, verifying, and patching bugs au-
tonomously. The challenge took place in 2016, and many of the
competing teams utilized grey-box fuzzers like AFL, in addition to
other tools for symbolic execution.

Each of the 200 binaries released as part of the challenge were
written by humans, and each of the programs have widely different
functionalities. Some binaries are simple, variants of simple pro-
grams for sorting or performing calculator operations, but many
of the programs are arbitrarily complex (like the text-only HTTP
server from Section 4.1), spanning hundreds of lines. However,
what all these binaries have in common is that each contains one
or more bugs, documented by the program writers. These bugs
are natural, in that they are programming errors that a human
would actually make, and as such make this dataset the ideal test

suite for benchmarking fuzzing applications. These bugs include
simple errors like off-by-one errors, or use-after-frees, but many
of the bugs are complex and hidden deep into programs, and can
only be found through full exploration; as an example, consider
the program ASCII_Content_Server.c from Section 4.1. One of
the bugs in this program (there are 3) is a null pointer dereference
that only occurs after performing a “VISUALIZE” command after
putting several pages of more than a certain size – vulnerabilities
like this that depend on several linked interactions are the common
mode of the bugs in the CGC dataset, again making it an excellent
test suite for benchmarking fuzzers.

While there are 200 binaries released as part of the DARPA
CGC dataset, we only utilize the 150 (split into 75/75 train and test
programs) that accept input over STDIN, as opposed to as com-
mand line arguments, or through files. This is for simplicity - to
allow our version of AFL to interface with the remaining bina-
ries, we would have needed to rewrite each program, or build a
program-specific pre-processor/loader. However, we found the 150
programs to be sufficient to draw conclusions from our fuzzing
results. Furthermore, while the original CGC binaries were released
for a DARPA-specific OS called DECREE, we utilize ported versions
of the binaries, compiled for x86 Linux OS. The full C code for each
binary, and cross-platform compilation instructions can be found
here: https://github.com/trailofbits/cb-multios.

5.2 LAVA-M
We also utilize the LAVA-M program dataset [10], 4 programs taken
from the GNU Coreutils suite, injected with thousands of syn-
thetic bugs. This dataset has become popular in recent years, for
benchmarking complex white-box fuzzers and symbolic execution
tools, in addition to certain grey-box fuzzers (and some variants
of AFL). The LAVA-M binaries also come with tools for the easy
de-duplication of crashes, allowing us to report actual bugs discov-
ered by our fuzzers. The synthetic bugs in the LAVA-M binaries
are highly complex, placed at various deep points in the program
(meaning that random inputs are highly unlikely to find them).

Specifically, the LAVA-M dataset consists of the following four
programs for GNU Coreutils version 8.24: 1) base64, run with
the -d (decode) option, 2) md5sum, run with the -c (check digests)

https://github.com/trailofbits/cb-multios

6 hr 12 hr 18 hr 24 hr Crashes Wins / FidgetyAFL Wins / All

AFL 0.64 ± 0.03 0.63 ± 0.03 0.63 ± 0.03 0.63 ± 0.03 554 18 4
FidgetyAFL 0.84 ± 0.02 0.84 ± 0.02 0.85 ± 0.02 0.84 ± 0.02 780 — 14
Empirical 0.85 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.87 ± 0.02 766 41 5
Thompson 0.91 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.93 ± 0.02 1336 52 47

Table 3: Results on the 75 DARPA CGC Test binaries. Wins are reported excluding ties. Thompson sampling has the highest
Relative Coverage, and more total unique crashes (unique code paths leading to crash) than any other strategy.

option, 3) uniq, and 4) who. These programs were injected with
28, 44, 57, and 2265 bugs respectively. All bugs injected into the
LAVA-M programs are of the following type: bugs that only trigger
when a certain offset of the program input buffer matches a 4-byte
“magic” (random) value (for more info see page 10 of [10]).

6 EXPERIMENTAL RESULTS
In this section we provide details for each batch of experiments we
run. Many of the following experiments consist of comparing many
different strategies (i.e. Thompson Sampling vs. FidgetyAFL, vs.
AFL). For many of our experiments, we evaluate against both AFL
and FidgetyAFL as baselines – in these cases, we treat FidgetyAFL
as our best baseline, due to its significantly better performance. In
addition to reporting aggregate counts on which strategy performs
best on a per-program basis, we also report Relative Coverage,
a metric which loosely provides a measure of how much better
one strategy is relative to the others (as AFL doesn’t instrument
the program to give us proper basic block coverage statistics): Let
s correspond to a given strategy, t the given time interval, and
code-pathst (s) be the number of unique code-paths that strategy
s has discovered by time t . Then Relative Coverage rel-cov for a
single program can be computed as:

rel-covt (s) =
code-pathst (s)

maxs ′[code-pathst (s ′)]
or the ratio between the number of code paths strategy s has found,
and the maximum number of code paths across all strategies. We
report the mean/standard error of this number across all programs.
Furthermore, to get a better sense of the general story of each
fuzzing run, we report statistics at each quartile of the total time
(e.g. at 6, 12, 18, and 24 hours of a 24 hour run). Note that this is
a relative statistic, estimated at a single time interval; this means
that this number may fluctuate for a given strategy across different
time intervals, because the gap between two strategies may grow
or diminish (this is the case in Table 3).

All of the following experiments are conducted on machines
running Ubuntu 14.04, with 12 GB of RAM and 2 cores. Prior to
starting fuzzing, we scrape all string constants from the binary we
are testing, to serve as dictionary entries during fuzzing.

6.1 Estimating sample_num_mutations
For our Thompson Sampling experiments, we need to resolve the
Credit Assignment problem from Section 4.3.3, by finding a fixed
(and ideally small) return value for sample_num_mutations (line 8
of Algorithm 1). To estimate this value, we propose the following
experiment: Let n be the number of stacked mutations that AFL

runs. Run multiple trials of AFL for a fixed amount of time, with
fixed values of n, in the range of values that AFL usually samples
from (recall that AFL samples uniformly among {20, 21, . . . 27}).
Then, pick the n with the performance closest to (or better than)
standard AFL.

The results in Table 2 show relative coverage statistics across
different fixed values of n every 30 minutes in a 2-hr fuzzing run.
Note that we fix values of n for FidgetyAFL instead of regular AFL,
as like prior work, we found FidgetyAFL to consistently perform
much better that AFL. These statistics were collected on the set of 75
training CGC binaries. It’s extremely interesting to note that fixed
values of n = 2, n = 4, and n = 8 each show better performance
than FidgetyAFL, which samples uniformly from a range of values.
Looking further at the data, we decided to use n = 4 to build our
approach, as it performs slightly better than n = 2 and n = 8.

6.2 Learning a Base Empirical Distribution
Next, we estimate a good stationary distribution over mutation op-
erators, as per Section 4.2. We estimate this “Empirical” distribution
(as we shall refer to it through the rest of this paper) utilizing the
procedure outlined in Section 4.2; namely, we run FidgetyAFL on
our training binaries, and we count how many times each mutation
operator was involved in the creation of a successful input (improv-
ing code coverage). We then normalize these counts to come up
with our final Empirical distribution. We perform our training runs
by fuzzing the 75 training binaries with FidgetyAFL for a 24 hour
period, dumping logging statistics every 3 minutes. Results with
the Empirical distribution can be found in the next section.

6.3 24 Hour Experiments
We run AFL, FidgetyAFL, the Empirical distribution fuzzer, and the
Thompson Sampling fuzzer on the DARPA CGC and the LAVA-M
binaries for 24 hours each. The Thompson Sampling experiments
follow the procedure outlined in Section 4.3. Utilizing the fixed
value of n = 4 from Section 6.1, we estimate the parameters θk
from Section 4.3 directly from data collected during the fuzzing run.
We start each Thompson Sampling run with a uniform mutator
distribution, as well as a uniform prior (we utilize a Beta distribution
with α = 1 and β = 1000 as the prior for each arm). Then, every 10
minutes, we update the distribution by sampling from the updated
posterior, estimated using the counts of successful/unsuccessful
operators we have observed thus far. Results are as follows:

6.3.1 DARPA Cyber Grand Challenge. Table 3 contains the results
for the DARPA CGC experiments. We report relative coverage
numbers at the 6, 12, 18, and 24 hour marks, as well as aggregate

Figure 1: Example 24hr runs on test programs (plotted with mean/stdev across 3 trials). At the beginning, the fuzzers discover
many new code paths, but as time goes on productivity decreases, until a new code path unlocks further discovery. On the left
we have a typical run where Thompson sampling is most productive, on program ASCII_Content_Server from Section 4.1. In
the middle, we have a run where Thompson sampling is extremely effective at the beginning of fuzzing, with the Empirical
distribution fuzzer gaining an edge later on. On the right, we have a run where FidgetyAFL is most effective.

win counts. Furthermore, we report the number of unique crashes
found at the end of the 24 hour fuzzing period. Recall that unique
crashes are inputs that exercise a unique code path that result in a
crash – for each bug in a program, there can be possibly hundreds
of unique crashes (as you can reach the same bug by traversing
different program paths). We present graphs showing progress over
time for three different CGC binaries in Figure 1.

6.3.2 LAVA-M. Table 4 reports the mean and standard error across
number of code paths discovered for each strategy, across 3 separate
24-hour trials (we ran extra trials here because of the small size
of the dataset). Table 5 reports the mean/standard error across the
number of verifiable bugs discovered by each fuzzer, again across 3
separate 24-hour trials (here, LAVA-M gives us the ability to de-dup
crashes, so we report bugs instead of crashes).

6.4 Thompson Sampling and FairFuzz
FairFuzz [18] is a recently introduced tool built on top of AFL,
optimizing AFL’s core functionality with a smarter, data-driven
approach for learning the pick_input and sample_mutation_-
site functions from Algorithm 1. Specifically, FairFuzz improves
fuzzing efficiency by prioritizing queue inputs that exercise rare
branches, or parts of the program under test that aren’t touched by

base64 md5sum uniq who

AFL 117 ± 20 55 ± 2 13 ± 0 37 ± 1
FidgetyAFL 133 ± 10 340 ± 10 87 ± 1 372 ± 36
Empirical 134 ± 8 406 ± 22 80 ± 1 115 ± 9
Thompson 144 ± 14 405 ± 2 75 ± 2 106 ± 16
FairFuzz 138 ± 7 348 ± 5 70 ± 3 232 ± 18
FairFuzz + Thompson 85 ± 6 127 ± 21 50 ± 4 23 ± 11
Table 4: Number of code paths discovered for each LAVA-M
binary, after 24 hours. Numbers reported aremean/standard
error across three separate trials.

many of the discovered inputs. Furthermore, FairFuzz performs an
analysis of which bytes in the input trigger certain branch behavior
– a sort of estimated taint tracking. In doing so, FairFuzz learns a
mask over input bytes that forces AFL to leave certain bytes alone
(i.e. headers or checksums), while focusing mutations on more
volatile sections. In the original FairFuzz paper [18], the authors
show that their approach is significantly more efficient than AFL,
FidgetyAFL, and another AFL-variant, AFLFast [4].

With this in mind, we wanted to answer two additional ques-
tions: 1) does Thompson Sampling approach provide better benefits
than those behind FairFuzz, and 2) are the optimizations behind
FairFuzz are complementary to Thompson Sampling. To explore
this, we performed additional experiments, running FairFuzz (with
the recommended configurations) on our test set of 75 DARPA CGC
binaries. Furthermore, we ported our Thompson Sampling changes
to FairFuzz, and ran this new FairFuzz + Thompson Sampling fuzzer
on the same binaries. Finally, we compared the three strategies in
terms of relative coverage, and unique crashes discovered. Table
6 reports the results for the FairFuzz experiments, after fuzzing
each of the 75 CGC test binaries for 24 hours. Thompson sampling
seems to have a significant edge in both crash finding and code
coverage, finding around 500 more crashes than FairFuzz across
all binaries, and obtaining 7% more coverage. What is especially

base64 md5sum uniq who

AFL 15 ± 5 0 ± 0 0 ± 0 0 ± 0
FidgetyAFL 26 ± 9 4 ± 1 1 ± 1 201 ± 56
Empirical 22 ± 5 0 ± 0 0 ± 0 78 ± 17
Thompson 31 ± 8 1 ± 1 0 ± 0 106 ± 16
FairFuzz 18 ± 4 1 ± 1 0 ± 0 18 ± 5
FairFuzz + Thompson 5 ± 2 0 ± 0 0 ± 0 0 ± 0

Table 5: Number of unique bugs (de-duped) discovered for
each LAVA-M binary, after 24 hours. Numbers reported are
mean/standard error across three separate trials.

Figure 2: Summary graph, showing relative code coverage
over time, across all programs (CGC + LAVA-M). Plot above
is depicted with error bars, representing a 95% confidence
interval (across programs).

interesting, though, is that there is a significant dip in performance
when combining the FairFuzz optimizations with the Thompson
Sampling optimizations over estimating a mutation operator dis-
tribution. Tables 4 and 5 show FairFuzz results on the LAVA-M
binaries; the results are again muddled, with Thompson Sampling
outperforming FairFuzz on 3 of the 4 binaries. However, these ex-
periments echo the CGC experiments, in that there is a significant
dip in performance for the combined FairFuzz + Thompson fuzzer.

7 DISCUSSION
Overall, the Thompson Sampling approach performed very well,
beating the best baselines, FidgetyAFL and FairFuzz by a large mar-
gin across the vast majority of binaries. Especially on the DARPA
CGC binaries, the Thompson Sampling fuzzer shows an almost 10
percent improvement in relative coverage over FidgetyAFL, while
also discovering 1336 unique crashes across all 75 test binaries,
almost double the amount found by any other fuzzer. Addition-
ally, of the 75 binaries, it finds more code paths than FidgetyAFL
on 52 binaries (excluding those binaries on which both strategies
discovered the same number of paths). Looking at the graphs in
Figure 1, we see that Thompson Sampling in the usual case beats
FidgetyAFL/AFL by a relatively significant margin (in the case of
programs like ASCII_Content_Server, and in some cases, can find
thousands more code paths (in the case of programs like CML). In

24 hr Crashes Wins / All

FairFuzz 0.88 ± 0.02 734 17
Thompson 0.95 ± 0.01 1287 49
FairFuzz + Thompson 0.57 ± 0.03 245 1

Table 6: Results for the FairFuzz experiments, on the 75 test
CGC binaries. Wins are reported excluding ties.

addition to the Thompson Sampling results, we also see that the esti-
mated Empirical distribution fuzzer performed rather well, beating
over FidgetyAFL by around 3 percent in terms of relative coverage.
That being said, on the DARPA CGC binaries, it is unable to find
more crashes than the baselines. Figure 2 shows a summary graph
of relative coverage over time, evaluating Thompson Sampling, the
Empirical Distribution, and both versions of AFL across all binaries
(CGC + LAVA-M), with error bars representing a 95% confidence
interval across programs. We see that Thompson Sampling out-
performs the other strategies at every timestep, and as fuzzing
continues, it outperforms other strategies by a larger margin.

Thompson Sampling is not a silver bullet, however; there are
some programs on which it fails to overcome FidgetyAFL (namely,
on the 14 programs mentioned in Table 3, and on the last graph
in Figure 1). This limitation is further explored with the LAVA-M
binaries, where we see that the Thompson Sampling approach ob-
tains lukewarm results. While on binaries base64 and md5sum, the
Thompson sampling approach is able to find more code paths, on
the remaining two binaries uniq and who, FidgetyAFL wins, in some
cases by a large margin. A possible explanation for this is due to the
credit assignment adjustment we made for Thompson Sampling –
by fixing the number of mutation operators to a small constant (in
our case, 4 mutations run per input), we are in fact limiting the ex-
pressive power of our fuzzer. The FidgetyAFL baseline, however, is
unconstrained, and in some cases can create inputs that differ from
their parents by as many as 128 mutations, thereby triggering cer-
tain parts of the code that the limited mutations cannot. This opens
up a possible avenue for future work; getting around the credit
assignment problem and learning adaptive distributions across any
choice of sample_num_mutations would allow for fuzzers more
powerful than those developed in this work. Additionally, when it
comes to crashes, we see a similar trend, with Thompson sampling
only finding more on the base64 binary. However, it is important
to note the high variance across crashes – this is again indicative
of the synthetic nature of the LAVA-M dataset. Because each bug is
triggered only by a single setting of 4 bytes of the input buffer, it is
quite random whether a given run finds certain bugs or not. This
seems to suggest that the LAVA-M binaries are more conducive to
testing symbolic execution tools and white box fuzzers that actually
inspect branch conditions in the code, and symbolically solve for
inputs to pass certain conditions; for random processes like AFL
and AFL-variants, it does not provide the most interpretable and
conclusive results.

Finally, compared to FairFuzz, we see that Thompson Sampling
has a significant advantage, in terms of relative code coverage
and crashes found across all 75 CGC binaries. This again indicates
the role the mutation distribution has on the efficacy of grey-box
fuzzing, compared to other optimizations like picking queue inputs.
What is especially interesting is that when combining the two seem-
ingly orthogonal optimizations (FairFuzz’s input and mutation site
selection, with Thompson Sampling’s mutation operator selection),
we see a significant drop in performance. While unfortunate, a
possible explanation is due to the disconnect between how FairFuzz
picks inputs, and how Thompson Sampling estimates its distribu-
tion over mutators. FairFuzz prioritizes inputs that exercise rare
branches of the program – inputs that make up only a slight per-
centage of the total queue. However, Thompson Sampling estimates

its distribution over mutators based on all inputs in the queue. As a
result, the Thompson Sampling distribution is not the same as the
optimal distribution for the FairFuzz chosen inputs. To remedy this,
a possible avenue of future work is to learn an input-conditional
distribution over mutators – by learning a different distribution for
each input, one can learn a more fine-grained policy for choosing
mutators, circumventing this distributional asymmetry.

8 CONCLUSION
In this work, we have presented a system for combining machine
learning and bandit-based optimization with state-of-the-art tech-
niques in grey-box fuzzing. Utilizing Thompson Sampling to adap-
tively learn distributions over mutation operators, we are able to
show significant improvements over many state-of-the-art grey-box
fuzzers, like AFL, FidgetyAFL, and the recently released FairFuzz.
While our approach is not a silver bullet that gains optimal results
on all programs fuzzed, it works in the vast majority of cases across
many real-world, complex programs, and in some cases, by several
orders of magnitude, finding hundreds more code paths and crashes
than other baselines. Our experiments conclusively show that there
are significant gains to be made by refining existing fuzzing tools
(and developing new ones!) with data-driven machine learning
techniques for adapting to wide varieties of different programs.

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of Thompson Sampling for the

Multi-armed Bandit Problem. In Proceedings of the 25th Annual Conference on
Learning Theory (Proceedings of Machine Learning Research), Shie Mannor, Nathan
Srebro, and Robert C. Williamson (Eds.), Vol. 23. PMLR, Edinburgh, Scotland,
39.1–39.26. http://proceedings.mlr.press/v23/agrawal12.html

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. CoRR
abs/1610.00502 (2018).

[3] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed Greybox Fuzzing. In CCS.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing as Markov Chain. In ACM Conference on Computer and
Communications Security.

[5] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. 2018. Deep Rein-
forcement Fuzzing. CoRR abs/1801.04589 (2018).

[6] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In OSDI.

[7] DARPA CGC. 2016. Darpa cyber grand challenge binaries. https://github.com/
CyberGrandChallenge. (2016).

[8] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. 2015 IEEE Symposium on Security and Privacy (2015), 725–
741.

[9] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist,
Marie-Laure Potet, and Jean-Yves Marion. 2016. BINSEC/SE: A Dynamic Sym-
bolic Execution Toolkit for Binary-Level Analysis. 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER) 1 (2016),
653–656.

[10] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
William K. Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-
Scale Automated Vulnerability Addition. 2016 IEEE Symposium on Security and
Privacy (SP) (2016), 110–121.

[11] Vijay Ganesh, Tim Leek, and Martin C. Rinard. 2009. Taint-based directed
whitebox fuzzing. 2009 IEEE 31st International Conference on Software Engineering
(2009), 474–484.

[12] Hugo Gascon, ChristianWressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. 2015. Pulsar: Stateful Black-Box Fuzzing of Proprietary Network Protocols.
In SecureComm.

[13] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In NDSS.

[14] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Commun. ACM 55 (2012), 40–44.

[15] Aki Helin. 2006. Radamsa fuzzer. https://github.com/aoh/radamsa. (2006).

[16] Saparya Krishnamoorthy, Michael S. Hsiao, and Loganathan Lingappan. 2010.
Tackling the Path Explosion Problem in Symbolic Execution-Driven Test Genera-
tion for Programs. 2010 19th IEEE Asian Test Symposium (2010), 59–64.

[17] Caca Labs. 2007. ZZUF - Multipurpose fuzzer. http://caca.zoy.org/wiki/zzuf.
(2007).

[18] Caroline Lemieux and Koushik Sen. 2017. FairFuzz: Targeting Rare Branches to
Rapidly Increase Greybox Fuzz Testing Coverage. CoRR abs/1709.07101 (2017).

[19] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In ESEC/SIG-
SOFT FSE.

[20] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering symbolic
execution to less traveled paths. In OOPSLA.

[21] Kin-Keung Ma, Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. 2011. Di-
rected Symbolic Execution. In SAS.

[22] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of the
Reliability of UNIX Utilities. Commun. ACM 33 (1990), 32–44.

[23] Corina S. Pasareanu, Neha Rungta, and Willem Visser. 2011. Symbolic execution
with mixed concrete-symbolic solving. In ISSTA.

[24] Mohit Rajpal, William Blum, and Rishabh Singh. 2017. Not all bytes are equal:
Neural byte sieve for fuzzing. CoRR abs/1711.04596 (2017).

[25] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In NDSS.

[26] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In USENIX Security Symposium.

[27] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Krügel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
NDSS.

[28] Fish Wang and Yan Shoshitaishvili. 2017. Angr - The Next Generation of Binary
Analysis. 2017 IEEE Cybersecurity Development (SecDev) (2017), 8–9.

[29] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine
Learning 8 (1992), 279–292.

[30] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling black-box mutational fuzzing. In ACM Conference on Computer and
Communications Security.

[31] Michal Zalewski. 2016. FidgetyAFL. https://groups.google.com/d/msg/afl-users/
fOPeb62FZUg/CES5lhznDgAJ. (2016).

[32] Michal Zawlewski. 2017. American Fuzzy Lop (AFL) Fuzzer. http://lcamtuf.
coredump.cx/afl/technical_details.txt. (2017).

[33] Michal Zawlewski. 2018. AFL Bug-O-Rama Trophy Case. http://lcamtuf.
coredump.cx/afl/#bugs. (2018).

[34] Michal Zawlewski. 2018. AFL Technical Details. http://lcamtuf.coredump.cx/afl/
technical_details.txt. (2018).

http://proceedings.mlr.press/v23/agrawal12.html
https://github.com/CyberGrandChallenge
https://github.com/CyberGrandChallenge
https://github.com/aoh/radamsa
http://caca.zoy.org/wiki/zzuf
https://groups.google.com/d/msg/afl-users/ fOPeb62FZUg/CES5lhznDgAJ
https://groups.google.com/d/msg/afl-users/ fOPeb62FZUg/CES5lhznDgAJ
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	Abstract
	1 Introduction
	2 Fuzzing Overview
	2.1 AFL

	3 Related Work
	4 Approach
	4.1 Motivating Examples
	4.2 Estimating Distributions Empirically
	4.3 Thompson Sampling

	5 Datasets
	5.1 DARPA Cyber Grand Challenge
	5.2 LAVA-M

	6 Experimental Results
	6.1 Estimating sample_num_mutations
	6.2 Learning a Base Empirical Distribution
	6.3 24 Hour Experiments
	6.4 Thompson Sampling and FairFuzz

	7 Discussion
	8 Conclusion
	References

